0000000000827715

AUTHOR

Aija Anisimova

showing 3 related works from this author

On the Second Order Rational Difference Equation $$x_{n+1}=\beta +\frac{1}{x_n x_{n-1}}$$ x n + 1 = β + 1 x n x n - 1

2016

The author investigates the local and global stability character, the periodic nature, and the boundedness of solutions of the second-order rational difference equation $$x_{n+1}=\beta +\frac{1}{x_{n}x_{n-1}}, \quad n=0,1,\ldots ,$$ with parameter \(\beta \) and with arbitrary initial conditions such that the denominator is always positive. The main goal of the paper is to confirm Conjecture 8.1 and to solve Open Problem 8.2 stated by A.M. Amleh, E. Camouzis and G. Ladas in On the Dynamics of a Rational Difference Equations I (International Journal of Difference Equations, Volume 3, Number 1, 2008, pp.1–35).

CombinatoricsCharacter (mathematics)ConjectureRational difference equationOpen problemMathematical analysisOrder (ring theory)Beta (velocity)Mathematics
researchProduct

Periodic orbits of single neuron models with internal decay rate 0 < β ≤ 1

2013

In this paper we consider a discrete dynamical system x n+1=βx n – g(x n ), n=0,1,..., arising as a discrete-time network of a single neuron, where 0 &lt; β ≤ 1 is an internal decay rate, g is a signal function. A great deal of work has been done when the signal function is a sigmoid function. However, a signal function of McCulloch-Pitts nonlinearity described with a piecewise constant function is also useful in the modelling of neural networks. We investigate a more complicated step signal function (function that is similar to the sigmoid function) and we will prove some results about the periodicity of solutions of the considered difference equation. These results show the complexity of …

Quantitative Biology::Neurons and CognitionMathematical analysisActivation functionSigmoid functionstabilitySingle-valued functiondynamical systemError functionsymbols.namesakefixed pointModeling and SimulationMittag-Leffler functionStep functioniterative processsymbolsPiecewiseQA1-939nonlinear problemConstant functionAnalysisMathematicsMathematicsMathematical Modelling and Analysis
researchProduct

Periodic and Chaotic Orbits of a Neuron Model

2015

In this paper we study a class of difference equations which describes a discrete version of a single neuron model. We consider a generalization of the original McCulloch-Pitts model that has two thresholds. Periodic orbits are investigated accordingly to the different range of parameters. For some parameters sufficient conditions for periodic orbits of arbitrary periods have been obtained. We conclude that there exist values of parameters such that the function in the model has chaotic orbits. Models with chaotic orbits are not predictable in long-term.

Discrete mathematicsQuantitative Biology::Neurons and CognitionGeneralizationMathematical analysisChaoticBiological neuron modelFunction (mathematics)stabilityDynamical systemStability (probability)dynamical systemModeling and Simulationiterative processRange (statistics)Orbit (dynamics)QA1-939chaotic mappingnonlinear problemAnalysisMathematicsMathematicsMathematical Modelling and Analysis
researchProduct