0000000000828466

AUTHOR

N Kurz

New isomers in the full seniority scheme of neutron-rich lead isotopes: The role of effective three-body forces

The neutron-rich lead isotopes, up to Pb216, have been studied for the first time, exploiting the fragmentation of a primary uranium beam at the FRS-RISING setup at GSI. The observed isomeric states exhibit electromagnetic transition strengths which deviate from state-of-the-art shell-model calculations. It is shown that their complete description demands the introduction of effective three-body interactions and two-body transition operators in the conventional neutron valence space beyond Pb208. © 2012 American Physical Society.

research product

⁴⁸Ca+²⁴⁹Bk Fusion Reaction Leading to Element Z=117: Long-Lived alpha-Decaying ²⁷⁰Db and Discovery of ²⁶⁶Lr

research product

Ca-48+Bk-249 Fusion Reaction Leading to Element Z=117: Long-Lived alpha-Decaying (270)Db and Discovery of Lr-266

The superheavy element with atomic number Z=117 was produced as an evaporation residue in the 48Ca+249Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope 294117 and its decay products. A hitherto unknown α-decay branch in 270Db (Z=105) was observed, which populated the new isotope 266Lr (Z=103). The identification of the long-live…

research product

New Short-Lived Isotope U-221 and the Mass Surface Near N=126

Two short-lived isotopes 221U and 222U were produced as evaporation residues in the fusion reaction 50Ti+176Yb at the gas-filled recoil separator TASCA. An α decay with an energy of Eα=9.31(5)  MeV and half-life T1/2=4.7(7)  μs was attributed to 222U. The new isotope 221U was identified in α-decay chains starting with Eα=9.71(5)  MeV and T1/2=0.66(14)  μs leading to known daughters. Synthesis and detection of these unstable heavy nuclei and their descendants were achieved thanks to a fast data readout system. The evolution of the N=126 shell closure and its influence on the stability of uranium isotopes are discussed within the framework of α-decay reduced width.

research product