showing 2 related works from this author
(2+1)-dimensional Einstein-Kepler problem in the centre-of-mass frame
1999
We formulate and analyze the Hamiltonian dynamics of a pair of massive spinless point particles in (2+1)-dimensional Einstein gravity by anchoring the system to a conical infinity, isometric to the infinity generated by a single massive but possibly spinning particle. The reduced phase space \Gamma_{red} has dimension four and topology R^3 x S^1. \Gamma_{red} is analogous to the phase space of a Newtonian two-body system in the centre-of-mass frame, and we find on \Gamma_{red} a canonical chart that makes this analogue explicit and reduces to the Newtonian chart in the appropriate limit. Prospects for quantization are commented on.
The 2 + 1 Kepler problem and its quantization
2001
We study a system of two pointlike particles coupled to three dimensional Einstein gravity. The reduced phase space can be considered as a deformed version of the phase space of two special-relativistic point particles in the centre of mass frame. When the system is quantized, we find some possibly general effects of quantum gravity, such as a minimal distances and a foaminess of the spacetime at the order of the Planck length. We also obtain a quantization of geometry, which restricts the possible asymptotic geometries of the universe.