Elaboration and characterization of organic/inorganic hybrid nanoporous material incorporating Keggin-type Mo-Si polyanions
A novel nanoporous (pore size of 11 nm in average, BET surface area of 30 m2/g, pore volume of 300 mm3/g) hybrid inorganic-organic material was synthesized using the solid-phase interaction at room temperature of plant-originated phenylpropanoid polymer lignin and a Keggin-type heteropolyanion [SiMo12O40]4-. The partly reduction of Mo(VI) to Mo(V) and complexes formation between lignin and polyanion have been established by EPR, FT-IR and Raman spectroscopy. The XRD pattern and FT-IR spectrum of the hybrid material and indicates that [SiMo12O40]4- anion maintains the Keggin structure.