0000000000846881

AUTHOR

José Sánchez-prieto

showing 2 related works from this author

Daidzein has neuroprotective effects through ligand-binding-independent PPARγ activation.

2011

Phytoestrogens are a group of plant-derived compounds that include mainly isoflavones like daidzein. Phytoestrogens prevent neuronal damage and improve outcome in experimental stroke; however, the mechanisms of this neuroprotective action have not been fully elucidated. In this context, it has been postulated that phytoestrogens might activate the peroxisome proliferator-activated receptor-γ (PPARγ), which exerts neuroprotective effects in several settings. The aim of this study was to determine whether the phytoestrogen daidzein elicits beneficial actions in neuronal cells by mechanisms involving activation of PPARγ. Our results show that daidzein (0.05-5 μM) decreases cell death induced b…

endocrine systemmedicine.drug_classPyridinesPeroxisome proliferator-activated receptorPharmacologyLigandsNeuroprotectionCellular and Molecular Neurosciencechemistry.chemical_compoundmedicineSynaptic vesicle recyclingAnimalsReceptorCells Culturedchemistry.chemical_classificationNeuronsDaidzeinfood and beveragesCell BiologyIsoflavonesReceptor antagonistIsoflavonesRatsOxygenPPAR gammaGlucoseNeuroprotective AgentschemistryBenzamidesPhytoestrogensNeurochemistry international
researchProduct

A restricted population of CB1 cannabinoid receptors with neuroprotective activity.

2014

The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain b…

MaleCannabinoid receptorPopulationNeurotoxinsExcitotoxicityGlutamic AcidBiologymedicine.disease_causeNeuroprotectionGlutamatergicMiceOrgan Culture TechniquesReceptor Cannabinoid CB1medicineAnimalsHumansGABAergic NeuronsReceptoreducationCaenorhabditis elegans ProteinsAgedCerebral CortexMice KnockoutNeuronseducation.field_of_studyMultidisciplinaryIntegrasesmusculoskeletal neural and ocular physiologyNeurodegenerative DiseasesBiological SciencesMiddle AgedReceptors GABA-AEndocannabinoid systemCorpus Striatumnervous systemGABAergiclipids (amino acids peptides and proteins)FemaleNeurosciencepsychological phenomena and processesEndocannabinoidsSynaptosomesProceedings of the National Academy of Sciences of the United States of America
researchProduct