0000000000847332

AUTHOR

E. Rodríguez Castellón

showing 2 related works from this author

Porous clays heterostructures as supports of iron oxide for environmental catalysis

2018

[EN] Porous Clays Heterostructures (PCH) from natural pillared clays (bentonite with a high proportion of montmorillonite) have been used as supports of iron oxide for two reactions of environmental interest: i) the elimination of toluene (a representative compound of one of the most toxic subsets of volatile organic compounds, aromatics) by total oxidation and ii) the selective oxidation of H2S to elemental sulfur. For both reactions these catalysts have resulted to be remarkably more efficient than similar catalysts prepared using conventional silica as a support. Thus, in the total oxidation of toluene it has been observed that the catalytic activity obtained using siliceous PCH is two o…

inorganic chemicalsGeneral Chemical EngineeringInorganic chemistryIron oxidechemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing EngineeringCatalysischemistry.chemical_compoundH2S to STotal and selective oxidationIron oxideEnvironmental ChemistrySulfatePorous Clays Heterostructures (PCH)ChemistryVOCGeneral Chemistry021001 nanoscience & nanotechnologySulfurToluene0104 chemical sciencesMontmorilloniteBentonite0210 nano-technologySelectivityTolueneChemical Engineering Journal
researchProduct

Nickel oxide supported on porous clay heterostructures as selective catalysts for the oxidative dehydrogenation of ethane

2016

[EN] Porous clay heterostructures (PCH) have shown to be highly efficient supports for nickel oxide in the oxidative dehydrogenation of ethane. Thus NiO supported on silica with a PCH structure shows productivity towards ethylene three times higher than if NiO is supported on a conventional silica. This enhanced productivity is due to the increase in the catalytic activity and especially to the drastic increase in the selectivity to ethylene. Additionally, PCH silica partially modified with titanium in the columns (PCH-Ti) have also been synthesized and used as supports for NiO. An enhanced activity and selectivity to ethylene was found over NiO supported over PCH-Ti compared to the corresp…

EthyleneMaterials scienceCatalystsNickel oxideNon-blocking I/OInorganic chemistrychemistry.chemical_elementNickel oxide supported02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesCatalysischemistry.chemical_compoundchemistryPorous Clay HeterostructuresDehydrogenationOxidative dehydrogenation of ethane0210 nano-technologyDispersion (chemistry)SelectivityTitaniumCatalysis Science & Technology
researchProduct