0000000000849308

AUTHOR

Howard T. Jacobs

showing 2 related works from this author

Manipulating mtDNA in vivo reprograms metabolism via novel response mechanisms.

2019

Mitochondria have been increasingly recognized as a central regulatory nexus for multiple metabolic pathways, in addition to ATP production via oxidative phosphorylation (OXPHOS). Here we show that inducing mitochondrial DNA (mtDNA) stress in Drosophila using a mitochondrially-targeted Type I restriction endonuclease (mtEcoBI) results in unexpected metabolic reprogramming in adult flies, distinct from effects on OXPHOS. Carbohydrate utilization was repressed, with catabolism shifted towards lipid oxidation, accompanied by elevated serine synthesis. Cleavage and translocation, the two modes of mtEcoBI action, repressed carbohydrate rmetabolism via two different mechanisms. DNA cleavage activ…

DYNAMICSLife CyclesSTRESSMITOCHONDRIAL-DNAADN mitocondrialQH426-470BiochemistryOxidative PhosphorylationLarvaeAdenosine TriphosphateTRANSCRIPTIONPost-Translational ModificationEnergy-Producing OrganellesProtein MetabolismOrganic CompoundsDrosophila MelanogasterChemical ReactionsMETHYLATIONEukaryotaAcetylationAnimal ModelsDNA Restriction EnzymesKetonesCellular ReprogrammingMitochondrial DNAMitochondriaTRANSLOCATIONNucleic acidsInsectsChemistryDROSOPHILAExperimental Organism SystemsPhysical SciencesSURVIVALCarbohydrate MetabolismCellular Structures and OrganellesMetabolic Networks and PathwaysResearch ArticlePyruvateArthropodaForms of DNAeducationCarbohydratesBioenergeticsResearch and Analysis MethodsDNA MitochondrialBiokemia solu- ja molekyylibiologia - Biochemistry cell and molecular biologyModel OrganismsGenetiikka kehitysbiologia fysiologia - Genetics developmental biology physiologyGeneticsAnimalsHumansBiology and life sciencesOrganic ChemistryOrganismsChemical CompoundsProteinsDNACell BiologyInvertebratesDELETIONSOxidative StressMetabolismMAINTENANCEDiabetes Mellitus Type 2Animal Studies1182 Biochemistry cell and molecular biologyAcidsDevelopmental BiologyPLoS Genetics
researchProduct

Replication origins and pause sites in sea urchin mitochondrial DNA

1992

We have used a combination of one- and two-dimensional agarose gel electrophoresis, and solution hybridization to strand-specific probes, to map the replication origin of sea urchin mitochondrial DNA and to investigate the structure of replication intermediates. These assays are consistent with replication initiating unidirectionally from the D-loop region by D-loop expansion, as in vertebrates. A prominent site of initiation of lagging-strand synthesis lies at, or near to, the boundary between the genes for ATPase 6 and COIII, which is also close to a pause site for leading-strand synthesis. These findings suggest a role for pause sites in the regulation of mitochondrial transcription and …

DNA ReplicationMitochondrial DNAMacromolecular SubstancesRestriction MappingEukaryotic DNA replicationBiologyOrigin of replicationPre-replication complexDNA MitochondrialDNA RibosomalGeneral Biochemistry Genetics and Molecular BiologyElectron Transport Complex IVRNA TransferControl of chromosome duplicationAnimalsElectrophoresis Gel Two-DimensionalGeneral Environmental ScienceElectrophoresis Agar GelGeneral Immunology and MicrobiologyTer proteinChromosome MappingNADH DehydrogenaseGeneral MedicineMolecular biologyCell biologyRNA RibosomalSea UrchinsNucleic Acid ConformationOrigin recognition complexSolution hybridizationGeneral Agricultural and Biological SciencesProceedings of the Royal Society of London. Series B: Biological Sciences
researchProduct