0000000000855295

AUTHOR

T. F. Giesen

showing 1 related works from this author

Spectroscopy of short-lived radioactive molecules: A sensitive laboratory for new physics

2019

The study of molecular systems provides exceptional opportunities for the exploration of the fundamental laws of nature and for the search for physics beyond the Standard Model of particle physics. Measurements of molecules composed of naturally occurring nuclei have provided the most stringent upper bounds to the electron electric dipole moment to date, and offer a route to investigate the violation of fundamental symmetries with unprecedented sensitivity. Radioactive molecules - where one or more of their atoms possesses a radioactive nucleus - can contain heavy and deformed nuclei, offering superior sensitivity for EDM measurements as well as for other symmetry-violating effects. Radium …

High Energy Physics - TheoryexceptionalNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]collinearFOS: Physical sciencesnucleus: structure function[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)ionizationPhysics::Atomic PhysicsNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentenhancementnew physics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]stabilitysensitivitylaserradiumelectron: electric momentHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)radioactivity[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]many-body problemnucleus: deformation
researchProduct