0000000000856543

AUTHOR

San Vũ Ngọc

showing 1 related works from this author

Analytic Bergman operators in the semiclassical limit

2018

Transposing the Berezin quantization into the setting of analytic microlocal analysis, we construct approximate semiclassical Bergman projections on weighted $L^2$ spaces with analytic weights, and show that their kernel functions admit an asymptotic expansion in the class of analytic symbols. As a corollary, we obtain new estimates for asymptotic expansions of the Bergman kernel on $\mathbb{C}^n$ and for high powers of ample holomorphic line bundles over compact complex manifolds.

Pure mathematicsadjoint operatorsMicrolocal analysis32A2501 natural sciences[MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph]Limit (mathematics)Bergman projectionComplex Variables (math.CV)[MATH]Mathematics [math]Mathematics::Symplectic GeometryMathematical PhysicsBergman kernelMathematicsasymptotic expansionweighted L2-estimates58J40[MATH.MATH-CV]Mathematics [math]/Complex Variables [math.CV]Mathematical Physics (math-ph)16. Peace & justiceFunctional Analysis (math.FA)Mathematics - Functional Analysisasymptoticstheoremkernelanalytic pseudodifferential operator010307 mathematical physicsAsymptotic expansion47B35classical limitAnalysis of PDEs (math.AP)Toeplitz operatorGeneral Mathematics70H15Holomorphic functionFOS: Physical sciencesSemiclassical physicsKähler manifold[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA]analytic symbolsMathematics - Analysis of PDEskahler-metrics0103 physical sciencesFOS: Mathematics[MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]0101 mathematicsMathematics - Complex VariablesMathematics::Complex Variables010102 general mathematics32W25space35A27Kähler manifoldmicrolocal analysisToeplitz operatorquantizationsemiclassical analysis
researchProduct