Controlled loading and release of beta-lactoglobulin in calcium-polygalacturonate hydrogels
International audience; We show here how the structure of polygalacturonate (polyGalA) hydrogels cross-linked by Ca2+ cations via external gelation controls the loading and the release rate of betalactoglobulin (BLG), a globular protein. Hydrogels prepared from a polyGalA/BLG solution are found similar to those obtained from a polyGalA solution in our previous study (Maire du Poset, et al. Biomacromolecules 2019, 20(7), 2864-2872): they exhibit similar transparencies and gradients of mechanical properties and polyGalA concentration. The nominal BLG/polyGalA ratio of the mixtures is almost recovered within the whole mixed hydrogel despite such strong concentration gradients, except in the pa…
Relaxation of the field-induced structural anisotropy in a rotating magnetic fluid
The relaxation of field-induced anisotropy in a magnetic fluid with dominant repulsion is theoretically modeled and experimentally measured by small angle neutron scattering on a sample rotating at angular velocity ω. The scattered pattern distortion scales as the Mason number Mn=ω·τq, τq being the q-dependent diffusion time of nanoparticles. The model accounts for the magnetophoretical drift in the non-homogeneous self-magnetic field of the assembly, continuously created by the thermal noise. The Mn-dependence of the pattern distortion is well described without any adjustable parameter.
Thermodiffusion anisotropy under a magnetic field in ionic liquid-based ferrofluids
International audience; Ferrofluids based on maghemite nanoparticles (NPs), typically 10 nm in diameter, are dispersed in an ionic liquid (1-ethyl 3-methylimidazolium bistriflimide - EMIM-TFSI). The average interparticle interaction is found to be repulsive by small angle scattering of X-rays and of neutrons, with a second virial coefficient A2 = 7.3. A moderately concentrated sample at Φ = 5.95 vol% is probed by forced Rayleigh scattering under an applied magnetic field (up to H = 100 kA m-1) from room temperature up to T = 460 K. Irrespective of the values of H and T, the NPs in this study are always found to migrate towards the cold region. The in-field anisotropy of the mass diffusion c…
Tuning the Structure of Galacturonate Hydrogels: External Gelation by Ca, Zn, or Fe Cationic Cross-Linkers
International audience; We show here how the nature of various divalent cations M2+ (Ca2+, Zn2+, or Fe2+) influences the structure and mechanical properties of ionotropic polygalacturonate (polyGal) hydrogels designed by the diffusion of cations along one direction (external gelation). All hydrogels exhibit strong gradients of polyGal and cation concentrations, which are similar for all studied cations with a constant ratio R = [M2+]/[Gal] equal to 0.25, showing that every M2+ cation interacts with four galacturonate (Gal) units all along the gels. The regions of the hydrogels formed in the early stages of the gelation process are also similar for all cations and are homogeneous, with the s…
Structural behaviour differences in low methoxy pectin solutions in the presence of divalent cations (Ca 2+ and Zn 2+ ): a process driven by the binding mechanism of the cation with the galacturonate unit
International audience; In this paper, we compare the interactions between low methoxy pectin (LMP) and either Ca2+ or Zn2+ in semi-dilute solutions. Intrinsic viscosity and turbidity measurements reveal that pectin-calcium solutions are more viscous, but yet less turbid, than pectin-zinc ones. To get a molecular understanding on the origin of this rather unexpected behavior, we further performed isothermal titration calorimetry, small angle neutron scattering experiments, as well as molecular dynamics simulations. Our results suggest that calcium cations induce the formation of a more homogeneous network of pectin than zinc cations do. The molecular dynamics simulations indicate that this …