0000000000857584

AUTHOR

R. K. Zamanov

showing 4 related works from this author

Evidence of H alpha periodicities in LS I+61303

1999

We present the results of analyzing H$\alpha$ spectra of the radio emitting X-ray binary LS I+61303. For the first time, the same 26.5 d radio period is clearly detected in the H$\alpha$ emission line. Moreover, the equivalent width and the peak separation of the H$\alpha$ emission line seem also to vary over a time scale of 1600 days. This points towards the $\sim4$ yr modulation, detected in the radio outburst amplitude, being probably a result of variations in the mass loss rate of the Be star and/or density variability in the circumstellar disk. In addition, the dependence of the peak separation from the equivalent width informs us that the LS I+61303 circumstellar disk is among the den…

Astrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)FOS: Physical sciencesAstrophysics::Earth and Planetary AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsAstrophysics::Galaxy Astrophysics
researchProduct

Photometric and Hα Observations of LSI+61°303

1994

The Be massive X-ray binary LSI+61°303 is a 26.5 days periodic radiosource (Taylor & Gregory, 1984), exhibiting radio outbursts maxima between phases 0.6-0.8. Evidence of a photometric period of similar value has also been reported (Paredes & Figueras, 1986; Mendelson & Mazeh, 1989). The previous spectroscopic radial velocity observations of Hutchings & Crampton (1981) are in agreement with the radio period, and give support to the presence of a companion. We present new optical and infrared photometric observations and high resolution Hα spectra of LSI+61°303.

PhysicsRadial velocityInfraredHigh resolutionAstrophysicsMaximaSpectral line
researchProduct

Comparison of the H-alpha circumstellar disks in Be/X-ray binaries and Be stars

2000

We present a comparative study of the circumstellar disks in Be/X-ray binaries and isolated Be stars based upon the H-alpha emission line. From this comparison it follows that the overall structure of the disks in the Be/X-ray binaries is similar to the disks of other Be stars, i.e. they are axisymmetric and rotationally supported. The factors for the line broadening (rotation and temperature) in the disks of the Be stars and the Be/X-ray binaries seem to be identical. However, we do detect some intriguing differences between the envelopes. On average, the circumstellar disks of the Be/X-ray binaries are twice as dense as the disks of the isolated Be stars. The different distribution of the…

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsCompact starRotationUNESCO::ASTRONOMÍA Y ASTROFÍSICAAstrophysicsEmissionX-raysAstrophysics::Solar and Stellar AstrophysicsEmission spectrumAstrophysics::Galaxy AstrophysicsLine (formation)PhysicsBinariesAstrophysics (astro-ph)X-rayAstronomy and AstrophysicsCircumstellar matterStars:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]StarsFull width at half maximumStars ; Emission ; Be star ; Circumstellar matter ; Binaries ; X-raysSpace and Planetary ScienceBe starH-alphaAstrophysics::Earth and Planetary AstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Evidence of Halpha periodicities in LSI+61·303

1999

We present the results of analyzing H$\alpha$ spectra of the radio emitting X-ray binary LS I+61303. For the first time, the same 26.5 d radio period is clearly detected in the H$\alpha$ emission line. Moreover, the equivalent width and the peak separation of the H$\alpha$ emission line seem also to vary over a time scale of 1600 days. This points towards the $\sim4$ yr modulation, detected in the radio outburst amplitude, being probably a result of variations in the mass loss rate of the Be star and/or density variability in the circumstellar disk. In addition, the dependence of the peak separation from the equivalent width informs us that the LS I+61303 circumstellar disk is among the den…

AstrofísicaX-ray binariesRadioastronomiaAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Cosmology and Extragalactic AstrophysicsRadio astronomyAstrophysicsStarsAstrophysics::Galaxy AstrophysicsEstelsEstels binaris de raigs X
researchProduct