showing 2 related works from this author
The Poisson Bracket Structure of the SL(2, R)/U(1) Gauged WZNW Model with Periodic Boundary Conditions
2000
The gauged SL(2, R)/U(1) Wess-Zumino-Novikov-Witten (WZNW) model is classically an integrable conformal field theory. A second-order differential equation of the Gelfand-Dikii type defines the Poisson bracket structure of the theory. For periodic boundary conditions zero modes imply non-local Poisson brackets which, nevertheless, can be represented by canonical free fields.
The Complete Solution of the Classical SL(2,ℝ/U(1) Gauged WZNW Field Theory
1998
We prove that any gauged WZNW model has a Lax pair representation, and give explicitly the general solution of the classical equations of motion of the SL(2,R)/U(1) theory. We calculate the symplectic structure of this solution by solving a differential equation of the Gelfand-Dikii type with initial state conditions at infinity, and transform the canonical physical fields non-locally onto canonical free fields. The results will, finally, be collected in a local B\"acklund transformation. These calculations prepare the theory for an exact canonical quantization.