0000000000860643

AUTHOR

David Ron

0000-0002-3014-5636

showing 2 related works from this author

Adaptive suppression of the ATF4–CHOP branch of the unfolded protein response by toll-like receptor signalling

2009

The endoplasmic reticulum (ER) unfolded protein response (UPR) restores equilibrium to the ER, but prolonged expression of the UPR effector CHOP (GADD153) is cytotoxic. We found that CHOP expression induced by ER stress was suppressed by prior engagement of toll-like receptor (TLR) 3 or 4 through a TRIF-dependent pathway. TLR engagement did not suppress phosphorylation of PERK or eIF-2alpha, which are upstream of CHOP, but phospho-eIF-2alpha failed to promote translation of the CHOP activator ATF4. In mice subjected to systemic ER stress, pretreatment with low dose lipopolysaccharide (LPS), a TLR4 ligand, suppressed CHOP expression and apoptosis in splenic macrophages, renal tubule cells an…

LipopolysaccharidesBiologyCHOPEndoplasmic ReticulumArticleMice03 medical and health sciences0302 clinical medicineStress Physiologicalhemic and lymphatic diseasesAnimalsHumansCells Cultured030304 developmental biologyMice Knockout0303 health sciencesToll-like receptorEndoplasmic reticulumToll-Like ReceptorsATF4Cell BiologyActivating Transcription Factor 4Cell biologyMice Inbred C57BLAdaptor Proteins Vesicular TransportTRIF030220 oncology & carcinogenesisUnfolded Protein ResponseUnfolded protein responseTLR4biological phenomena cell phenomena and immunitySignal transductionTranscription Factor CHOPSignal TransductionNature Cell Biology
researchProduct

Hypothalamic eIF2 alpha signaling regulates food intake

2014

International audience; The reversible phosphorylation of the a subunit of eukaryotic initiation factor 2 (eIF2 alpha) is a highly conserved signal implicated in the cellular adaptation to numerous stresses such as the one caused by amino acid limitation. In response to dietary amino acid deficiency, the brain-specific activation of the eIF2 alpha kinase GCN2 leads to food intake inhibition. We report here that GCN2 is rapidly activated in the mediobasal hypothalamus (MBH) after consumption of a leucine-deficient diet. Furthermore, knockdown of GCN2 in this particular area shows that MBH GCN2 activity controls the onset of the aversive response. Importantly, pharmacological experiments demo…

Male[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEukaryotic Initiation Factor-2neuronsEatingMicepiriform cortex0302 clinical medicineGene Knockdown Techniquesarcuate nucleusamino-acid deficiency;arcuate nucleus;translational control;energy homeostasis;piriform cortex;cancer cachexia;protein-intake;transfer-rna;mechanism;neuronsPhosphorylationlcsh:QH301-705.52. Zero hungerchemistry.chemical_classification0303 health sciencesGene knockdownalimentationtranslational controlamino-acid deficiencyEukaryotic Initiation Factor-2Amino acidtransfer-rnaGene Knockdown TechniquesAlimentation et NutritionPhosphorylation[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Signal transductionmedicine.symptomSignal Transductioncancer cachexiamedicine.medical_specialtyCellular adaptationHypothalamusmechanismAnorexiaBiologyProtein Serine-Threonine KinasesGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesLeucineInternal medicinemedicineFood and NutritionAnimalsenergy homeostasis030304 developmental biologyNeurosciencesArcuate Nucleus of Hypothalamusprotein-intakeMice Inbred C57BL[SDV.AEN] Life Sciences [q-bio]/Food and NutritionEndocrinologychemistrylcsh:Biology (General)Neurons and Cognition[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgery
researchProduct