0000000000860766

AUTHOR

Henk Bolhuis

0000-0002-4772-1898

showing 1 related works from this author

Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin

2009

Urania basin in the deep Mediterranean Sea houses a lake that is >100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulfide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers…

SalinitySulfideMethanogenesisMolecular Sequence Datageosphere-biosphere interactionchemistry.chemical_elementGEO/01 - PALEONTOLOGIA E PALEOECOLOGIA03 medical and health sciencesWater columnelement cyclingMediterranean SeaSeawater14. Life underwaterEcosystemComputingMilieux_MISCELLANEOUS030304 developmental biology2. Zero hungerchemistry.chemical_classification[SDU.OCEAN]Sciences of the Universe [physics]/Ocean AtmosphereManganese0303 health sciencesNitratesMultidisciplinaryBacteriabiology030306 microbiologyEcologyWaterdeep anoxic hypersaline lake15. Life on landbiology.organism_classificationArchaeaSulfurAnoxic waters6. Clean waterOxygenRedox gradientchemistryDeep anoxic hypersaline lake; Element cycling; Geosphere-biosphere interaction; Mediterranean Sea; Microbial diversityEnvironmental chemistrymicrobial diversityPhysical SciencesSeawaterdeep anoxic hypersaline lake element cycling geosphere–biosphere interaction Mediterranean Sea microbial diversitySulfurArchaea
researchProduct