0000000000866273

AUTHOR

Amira Masri

showing 2 related works from this author

Autosomal-Recessive Mutations in AP3B2, Adaptor-Related Protein Complex 3 Beta 2 Subunit, Cause an Early-Onset Epileptic Encephalopathy with Optic At…

2016

International audience; Early-onset epileptic encephalopathy (EOEE) represents a heterogeneous group of severe disorders characterized by seizures, interictal epileptiform activity with a disorganized electroencephalography background, developmental regression or retardation, and onset before 1 year of age. Among a cohort of 57 individuals with epileptic encephalopathy, we ascertained two unrelated affected individuals with EOEE associated with developmental impairment and autosomal-recessive variants in AP3B2 by means of whole-exome sequencing. The targeted sequencing of AP3B2 in 86 unrelated individuals with EOEE led to the identification of an additional family. We gathered five addition…

0301 basic medicineMaleMicrocephalyDevelopmental DisabilitiesPostnatal microcephalycopper-metabolismEpilepsy0302 clinical medicineexpansionhermansky-pudlak-syndromeddc:576.5Age of OnsetChilddisordersGenetics (clinical)seizuresGeneticsMEDNIK syndromeSyndrome3. Good healthPedigreeintellectual disabilityChild Preschoolmednik syndromeMicrocephalyFemaleDevelopmental regressionAdaptor Protein Complex 3Genes RecessiveBiologyAP3B103 medical and health sciencesAtrophyReport[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyGeneticsmedicineHumansAdaptor Protein Complex beta SubunitsmousediseaseEpilepsyap-4 deficiencyInfant NewbornInfantmedicine.diseaseOptic Atrophy030104 developmental biologyMutationHermansky–Pudlak syndrome030217 neurology & neurosurgery[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

New Hyperekplexia Mutations Provide Insight into Glycine Receptor Assembly, Trafficking, and Activation Mechanisms*

2013

Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage to hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated that the dominant mutations p.Q226E, p.V280M, and p.R414H induced spontaneous channel activity, indicat…

MaleProtein subunitMutation MissenseBiologyBiochemistryProtein Structure SecondaryReceptors GlycinemedicineHumansHyperekplexiaReceptorMolecular BiologyGlycine receptorIon channelGeneticsWild typeMolecular Bases of DiseaseCell BiologyMuscle RigidityProtein Structure TertiaryAmino Acid SubstitutionGene Expression RegulationFemalemedicine.symptomIon channel linked receptorsCys-loop receptors
researchProduct