0000000000871149

AUTHOR

Donald C. Warren

3D modeling from the onset of the SN to the full-fledged SNR: Role of an initial ejecta anisotropy on matter mixing

The aim of this work is to bridge the gap between CC SNe and their remnants by investigating how post-explosion anisotropies in the ejecta influence the structure and chemical properties of the remnant at later times. We performed three-dimensional magneto-hydrodynamical simulations starting soon after the SN event and following the evolution of the system in the circumstellar medium (consisting of the wind of the stellar progenitor), for 5000 years, obtaining the physical scenario of a SNR. Here we focused the analysis on the case of a progenitor red supergiant of 19.8 M_sun. We also investigated how a post-explosion large-scale anisotropy in the SN affects the ejecta distribution and the …

research product

Closure relations during the plateau emission of Swift GRBs and the fundamental plane

The Neil Gehrels Swift observatory observe Gamma-Ray bursts (GRBs) plateaus in X-rays. We test the reliability of the closure relations through the fireball model when dealing with the GRB plateau emission. We analyze 455 X-ray lightcurves (LCs) collected by \emph{Swift} from 2005 (January) until 2019 (August) for which the redshift is both known and unknown using the phenomenological Willingale 2007 model. Using these fits, we analyze the emission mechanisms and astrophysical environments of these GRBs through the closure relations within the time interval of the plateau emission. Finally, we test the 3D fundamental plane relation (Dainotti relation) which connects the prompt peak luminosi…

research product