0000000000871550
AUTHOR
Evelyne Van Ruymbeke
Deconvolution of the Effects of Binary Associations and Collective Assemblies on the Rheological Properties of Entangled Side-Chain Supramolecular Polymer Networks
The properties and function of supramolecular polymer networks are determined not only by pairwise interchain transient associations but also by chain entanglement and nanoscopic phase separation of the associative groups. To unravel the impact and interplay of these different factors, we devise a set of model supramolecular polymer networks in which the number of entanglements and the density of associative groups are systematically varied. Rheological data show that by increasing the density of associative groups, the plateau modulus grows to a steady level and extends over a distinct frequency range. This is credited to the presence of binary associations with unique partner exchange tim…
Rheological modifiers based on supramolecular block copolymers: From weak associations to interconnected micelles
Abstract The rheological spectra of poly(n-butyl acrylate) in the presence of a series of P(nBA-b-HEMA) rheology modifiers show a two-step relaxation process originating from the PnBA matrix and the self-assemblies. The HEMA segments are further grafted with strong, hydrogen bonding UPy groups, which both magnifies and slows down the relaxation of the assemblies. The extents of associations are enlightened by studying thermal transitions in DSC, morphological developments by SAXS, and description of rheological properties using a tube-based model. It is revealed that a weak association tendency, due to long hydrophobic blocks, leads to the formation of double-linear or star assemblies, whil…