0000000000872961

AUTHOR

Rm Fontana

showing 5 related works from this author

Cyclodextrin‐Calixarene Nanosponges as Potential Platforms for pH‐Dependent Delivery of Tetracycline

2019

Four mixed cyclodextrin-calixarene nanosponges were tested as possible Drug Delivery Systems, using Tetracycline antibiotic as a suitable model drug. The selected nanosponges featured a different composition ratio between the two host co-monomer components, and the possible presence of ionisable amine or carboxyl groups deriving from chemical post-modification. The pH-dependent absorption and release abilities of the materials were verified; in particular release kinetics showed the occurrence of a simple first-order profile. The antibacterial activity of nanosponge-tetracycline composites suitably prepared under sterile conditions was assayed towards both Gram-positive and Gram-negative ty…

chemistry.chemical_classificationNanospongesCyclodextrinTetracyclinePh dependentSettore CHIM/06 - Chimica OrganicaGeneral ChemistryTetracyclineSettore BIO/19 - Microbiologia GeneraleCombinatorial chemistrychemistryNanospongesCalixareneDrug deliveryCalixarenemedicineCyclodextrinmedicine.drugChemistrySelect
researchProduct

The effects of structural changes on the anti-microbial and anti-proliferative activities of diimidazolium salts

2017

An array of diimidazolium salts has been synthesized and used to investigate their anti-microbial and anti-proliferative activities. In particular, salts based on the 3,30-di-n-alkyl-1,10-(1,n-phenylenedimethylene)- diimidazolium cation and differing in the alkyl chain length on the imidazolium ion, the isomeric substitution on the aromatic spacer and in the anion nature were used. The anti-proliferative activity was evaluated against cervical (HeLa), colon adenocarcinoma (HT-29) and breast (SKBR3) cancer cell lines. In the latter case, also a morphological assessment after treatment with salts was performed. All salts were tested for their hemolytic activity against human erythrocytes. On …

StereochemistryBacillus subtilis010402 general chemistrymedicine.disease_causeSettore BIO/19 - Microbiologia Generale01 natural sciencesCatalysisHeLaMaterials ChemistrymedicineSettore BIO/06 - Anatomia Comparata E CitologiaEscherichia coliAlkylchemistry.chemical_classificationbiology010405 organic chemistryChemistryCationic polymerizationdiimidazolium salts anti-bacterial activity anti-proliferative activityBiological activityGeneral ChemistrySettore CHIM/06 - Chimica Organicabiology.organism_classificationAntimicrobial0104 chemical sciencesSettore BIO/18 - GeneticaSKBR3
researchProduct

DICATIONIC IMIDAZOLIUM SALTS: TUNABLE ANTIMICROBIAL AND ANTITUMORAL CHEMIOTHERAPEUTIC LEADS

2015

The chemical synthesis of novel chemotherapeutical leads is evolving thanks to possibility to design molecules with desired physical-chemical and, thus, biological properties. The imidazolium salts, recently proven effective to inhibit bacterial and/or cancer cell growth, posses an amphiphilic nature that is conferred by the imidazolium cation having a polar head generally coupled with aliphatic side chains. Thus, biological properties of imidazolium salts can be tuned through modifications involving the cation structure and/or the anion nature. By covalently linking two imidazolium rings, di-imidazolium salts were obtainedobtain differing in: i) kind of anions; ii) geometric isomerization …

DICATIONIC IMIDAZOLIUM SALTS ANTITUMORAL ANTIMICROBIAL
researchProduct

Effect of PCL/PEG-Based Membranes on Actinorhodin Production in Streptomyces coelicolor Cultivations

2015

The actinomycetes, Gram-positive filamentous bacteria, are the most prolific source of natural occurring antibiotics. At an industrial level, antibiotics from actinomycete strains are produced by means of submerged fermentations, where one of the major factors negatively affecting bioproductivity is the pellet-shaped biomass growth. The immobilization of microorganisms on properly chosen supports prevents cell-cell aggregation resulting in improving the biosynthetic capability. Thus, novel porous biopolymer-based devices are developed by combining melt mixing and particulate leaching. In particular, polycaprolactone (PCL), polyethylene glycol (PEG), and sodium chloride (NaCl) with different…

Materials Chemistry2506 Metals and AlloysPCL/PEG membranePolymers and PlasticsPolyestersParticulate leachingS. coelicolor immobilizationAnthraquinonesStreptomyces coelicolorBioengineering02 engineering and technologyPolyethylene glycolengineering.material010402 general chemistry01 natural sciencesActinorhodinPolyethylene GlycolsBiomaterialschemistry.chemical_compoundMelt mixingPEG ratioBotanyMaterials ChemistryCell AggregationPolymers and PlasticbiologyChemistryStreptomyces coelicolorActinorhodin productiontechnology industry and agriculture021001 nanoscience & nanotechnologybiology.organism_classificationBiomaterialCell aggregationAnti-Bacterial Agents0104 chemical sciencesBlue coloredMembraneChemical engineeringFermentationengineeringBiopolymer0210 nano-technologyBiotechnology
researchProduct

Plasma modified PLA electrospun membranes for actinorhodin production intensification in Streptomyces coelicolor immobilized-cell cultivations

2017

Most of industrially relevant bioproducts are produced by submerged cultivations of actinomycetes. The immobilization of these Gram-positive filamentous bacteria on suitable porous supports may prevent mycelial cell-cell aggregation and pellet formation which usually negatively affect actinomycete submerged cultivations, thus, resulting in an improved biosynthetic capability. In this work, electrospun polylactic acid (PLA) membranes, subjected or not to O2-plasma treatment (PLA-plasma), were used as support for immobilized-cell submerged cultivations of Streptomyces coelicolor M145. This strain produces different bioactive compounds, including the blue-pigmented actinorhodin (ACT) and red-p…

0301 basic medicinePolyestersSegmented filamentous bacteriaS. coelicolor immobilizationAnthraquinonesStreptomyces coelicolor02 engineering and technologySecondary metaboliteSettore BIO/19 - Microbiologia GeneraleActinorhodinMicrobiology03 medical and health scienceschemistry.chemical_compoundColloid and Surface Chemistrystomatognathic systemPolylactic acidmedicinePlasma treatmentPhysical and Theoretical ChemistryIncubationMyceliumbiologyElectrospinningPhotoelectron SpectroscopyProdigiosinStreptomyces coelicolorActinorhodin productiontechnology industry and agricultureSettore ING-IND/34 - Bioingegneria IndustrialePLA membraneSurfaces and InterfacesGeneral Medicine021001 nanoscience & nanotechnologybiology.organism_classificationAnti-Bacterial Agents030104 developmental biologyMembraneSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialichemistryBiochemistryMicroscopy Electron Scanning0210 nano-technologyBiotechnologymedicine.drug
researchProduct