Epistasis between new mutations and genetic background and a test of genetic canalization.
The importance for fitness of epistatic interactions among mutations is poorly known, yet epistasis can exert important effects on the dynamics of evolving populations. We showed previously that epistatic interactions are common between pairs of random insertion mutations in the bacterium Escherichia coli. In this paper, we examine interactions between these mutations and other mutations by transducing each of twelve insertion mutations into two genetic backgrounds, one ancestral and the other having evolved in, and adapted to, a defined laboratory environment for 10,000 generations. To assess the effect of the mutation on fitness, we allowed each mutant to compete against its unmutated cou…
Natural Selection Fails to Optimize Mutation Rates for Long-Term Adaptation on Rugged Fitness Landscapes
The rate of mutation is central to evolution. Mutations are required for adaptation, yet most mutations with phenotypic effects are deleterious. As a consequence, the mutation rate that maximizes adaptation will be some intermediate value. Here, we used digital organisms to investigate the ability of natural selection to adjust and optimize mutation rates. We assessed the optimal mutation rate by empirically determining what mutation rate produced the highest rate of adaptation. Then, we allowed mutation rates to evolve, and we evaluated the proximity to the optimum. Although we chose conditions favorable for mutation rate optimization, the evolved rates were invariably far below the optimu…