0000000000874832

AUTHOR

Xia Kong

showing 3 related works from this author

The lower rather than higher density charge carrier determines the NH 3 -sensing nature and sensitivity of ambipolar organic semiconductors

2018

International audience; Despite the extensive studies and great application potentials, the sensing nature of ambipolar organic semiconductor gas sensors still remains unclarified, unlike their inorganic counterparts. Herein, different numbers of thiophenoxy groups are introduced into the phthalocyanine periphery of bis(phthalocyaninato) rare earth semiconductors to continuously tune their HOMO and LUMO energies, resulting in the ambipolar M[Pc(SPh)(8)](2) [M = Eu (1), Ho (2)] and p-type M(Pc)[Pc(SPh)(8)] [M = Eu (3), Ho (4)]. An OFET in combination with direct I-V measurements over the devices from the self-assembled nanostructures of 1-4 revealed the original electron and hole densities (…

Materials sciencematerials designoxidizing no2Analytical chemistry02 engineering and technologyElectronthin-film transistors010402 general chemistry01 natural scienceslangmuir-blodgett-filmsgas sensorchemistry.chemical_compoundMaterials Chemistry[CHIM]Chemical SciencesGeneral Materials Sciencemolecular materialsHOMO/LUMOcopper-phthalocyanineOrganic field-effect transistorAmbipolar diffusionbusiness.industryfield-effect transistorschemical sensors021001 nanoscience & nanotechnology0104 chemical sciencesOrganic semiconductorSemiconductorchemistryPhthalocyanineCharge carrierdecker complexes0210 nano-technologybusiness
researchProduct

Two-Step Solution-Processed Two-Component Bilayer Phthalocyaninato Copper-Based Heterojunctions with Interesting Ambipolar Organic Transiting and Eth…

2016

International audience; The two-component phthalocyaninato copper-based heterojunctions fabricated from n-type CuPc(COOC8H17)(8) and p-type CuPc(OC8H17)(8) by a facile two-step solution-processing quasi-Langmuir-Shafer method with both n/p- and p/n-bilayer structures are revealed to exhibit typical ambipolar air-stable organic thin-film transistor (OTFT) performance. The p/n-bilayer devices constructed by depositing CuPc(COOC8H17)(8) film on CuPc(OC8H17)(8) sub-layer show superior OTFT performance with hole and electron mobility of 0.11 and 0.02 cm(2) V-1 s(-1), respectively, over the ones with n/p-bilayer heterojunction structure with the hole and electron mobility of 0.03 and 0.016 cm(2) …

Electron mobilityMaterials scienceroom-temperaturematerials designsemiconducting natureairsolution-processability02 engineering and technologythin-film transistorsphthalocyanines010402 general chemistry01 natural sciences[ CHIM ] Chemical Sciencesgas sensorchemistry.chemical_compound[CHIM]Chemical Sciencesorganic heterojunctioncomparative performancesbusiness.industryAmbipolar diffusionMechanical EngineeringBilayerethanol sensorsfield-effect transistorsHeterojunction[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesIndium tin oxidechemistryMechanics of MaterialsThin-film transistor[ CHIM.MATE ] Chemical Sciences/Material chemistryPhthalocyanineOptoelectronicsfunctional theory calculationsField-effect transistor0210 nano-technologybusinessambipolar OTFTn-type
researchProduct

Thin-Film Transistors: Two-Step Solution-Processed Two-Component Bilayer Phthalocyaninato Copper-Based Heterojunctions with Interesting Ambipolar Org…

2016

Materials scienceComponent (thermodynamics)Ambipolar diffusionbusiness.industryMechanical EngineeringBilayerTwo stepchemistry.chemical_elementHeterojunctionCopperSolution processedchemistryMechanics of MaterialsThin-film transistorOptoelectronicsbusinessAdvanced Materials Interfaces
researchProduct