0000000000877676
AUTHOR
F. Baudelet
Effect of Pressure and Temperature on the Local Structure and Lattice Dynamics of Copper(II) Oxide
Abstract Microcrystalline and nanocrystalline (6 nm) CuO were studied in situ by the Cu K-edge X-ray absorption spectroscopy as a function of pressure (0-20 GPa) and temperature (10-300 K). Pressure dependence of X-ray absorption near edge structure (XANES) was interpreted within the full-multiple-scattering formalism based on the relaxed atomic structure determined by ab initio linear combination of atomic orbital (LCAO) calculations. Temperature dependence of the mean-square relative displacement (MSRD) for the four shortest Cu–O distances was obtained from the analysis of extended X-ray absorption fine structure (EXAFS) and described by the correlated Einstein model with the characterist…
Local disorder studied inSrTiO3at low temperature by EXAFS spectroscopy
The temperature dependence of the local distortions in ${\mathrm{SrTiO}}_{3}$ has been studied by EXAFS spectroscopy at the titanium K edge (4982 eV). The oxygen-ion Debye-Waller factor ${\mathrm{\ensuremath{\sigma}}}_{0}^{2}$ has been determined from 4.5 to 240 K. The antiferrodistortive transition at 105 K is evidenced by a step in this Debye-Waller factor. At about 31 K, a maximum of ${\mathrm{\ensuremath{\sigma}}}_{0}^{2}$ is detected and the EXAFS oscillations due to the first oxygen shell increase. This is the signature of a maximum disorder in the lattice vibrations in this temperature range. A quasiharmonic model with a sinusoidal modulation of the Ti-O distance cannot account for t…