Human Activity Signatures Captured under Different Directions Using SISO and MIMO Radar Systems
In this paper, we highlight and resolve the shortcomings of single-input single-output (SISO) millimeter wave (mm-Wave) radar systems for human activity recognition (HAR). A 2×2 distributed multiple-input multiple-output (MIMO) radar framework is presented to capture human activity signatures under realistic conditions in indoor environments. We propose to distribute the two pairs of collocated transmitter–receiver antennas in order to illuminate the indoor environment from different perspectives. For the proposed MIMO system, we measure the time-variant (TV) radial velocity distribution and TV mean radial velocity to observe the signatures of human activities. We deploy the Anc…
Interchannel Interference and Mitigation in Distributed MIMO RF Sensing
In this paper, we analyze and mitigate the cross-channel interference, which is found in multiple-input multiple-output (MIMO) radio frequency (RF) sensing systems. For a millimeter wave (mm-Wave) MIMO system, we present a geometrical three-dimensional (3D) channel model to simulate the time-variant (TV) trajectories of a moving scatterer. We collected RF data using a state-of-the-art radar known as Ancortek SDR-KIT 2400T2R4, which is a frequency-modulated continuous wave (FMCW) MIMO radar system operating in the K-band. The Ancortek radar is currently the only K-band MIMO commercial radar system that offers customized antenna configurations. It is shown that this radar system encounters th…