0000000000878589

AUTHOR

Lea Schroeder

showing 2 related works from this author

Site-by-site tracking of signal transduction in an azidophenylalanine-labeled bacteriophytochrome with step-scan FTIR spectroscopy

2021

Signal propagation in photosensory proteins is a complex and multidimensional event. Unraveling such mechanisms site-specifically in real time is an eligible but a challenging goal. Here, we elucidate the site-specific events in a red-light sensing phytochrome using the unnatural amino acid azidophenylalanine, vibrationally distinguishable from all other protein signals. In canonical phytochromes, signal transduction starts with isomerization of an excited bilin chromophore, initiating a multitude of processes in the photosensory unit of the protein, which eventually control the biochemical activity of the output domain, nanometers away from the chromophore. By implementing the label in pri…

Models MolecularAzidesProtein ConformationPhenylalaninespektroskopiaTongue regionGeneral Physics and Astronomyfotobiologia010402 general chemistryTracking (particle physics)01 natural sciences03 medical and health scienceschemistry.chemical_compoundBacterial ProteinsSpectroscopy Fourier Transform InfraredAmino Acid SequenceAmino AcidsPhysical and Theoretical ChemistryFourier transform infrared spectroscopyBilin030304 developmental biology0303 health sciencesBinding SitesStaining and LabelingbiologyPhytochromeChemistryDeinococcus radioduransChromophorePhotochemical Processesbiology.organism_classification0104 chemical sciencesKineticsBiophysicsPhytochromeproteiinitvalokemiaSignal transductionProtein BindingSignal TransductionPhysical Chemistry Chemical Physics
researchProduct

Chromophore-Protein Interplay During the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy

2018

Phytochrome proteins regulate many photoresponses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling domains of the protein. However, the structural changes are elusive, and therefore the molecular mechanism of signal transduction remains poorly understood. Here, we apply two-color step-scan infrared spectroscopy to the bacteriophytochrome from Deinococcus radiodurans. We show by recordings in H2O and D2O that the hydrogen bonds to the biliverdin D-ring carbonyl become disordered in the first intermediate (Lumi-R) forming a dynamic microenvironment, then completely detach …

0301 basic medicineInfrared spectroscopyMolecular Dynamics SimulationBiochemistryCatalysis03 medical and health scienceschemistry.chemical_compoundchromophore-protein interplayColloid and Surface ChemistryBacterial ProteinsSpectroscopy Fourier Transform InfraredPeptide bondta116BiliverdinbiologyPhytochromeHydrogen bondBiliverdineta1182WaterHydrogen BondingDeinococcus radioduransGeneral ChemistryChromophorePhotochemical Processesbiology.organism_classification030104 developmental biologychemistryBiophysicsProtein Conformation beta-StrandDeinococcusPhytochromevalokemiaproteiinitSignal transductionstep-scan FTIR spectroscopyAdenylyl CyclasesJournal of the American Chemical Society
researchProduct