0000000000882587

AUTHOR

Stephan Nussberger

0000-0003-3619-4452

showing 2 related works from this author

2-Methoxyestradiol Affects Mitochondrial Biogenesis Pathway and Succinate Dehydrogenase Complex Flavoprotein Subunit A in Osteosarcoma Cancer Cells.

2017

Background/aim Dysregulation of mitochondrial pathways is implicated in several diseases, including cancer. Notably, mitochondrial respiration and mitochondrial biogenesis are favored in some invasive cancer cells, such as osteosarcoma. Hence, the aim of the current work was to investigate the effects of 2-methoxyestradiol (2-ME), a potent anticancer agent, on the mitochondrial biogenesis of osteosarcoma cells. Materials and methods Highly metastatic osteosarcoma 143B cells were treated with 2-ME separately or in combination with L-lactate, or with the solvent (non-treated control cells). Protein levels of α-syntrophin and peroxisome proliferator-activated receptor gamma, coactivator 1 alph…

0301 basic medicineCancer ResearchSIRT3Protein subunitSDHAMuscle ProteinsAntineoplastic AgentsMolecular Dynamics SimulationBiochemistryElectron Transport Complex IV03 medical and health sciences0302 clinical medicineGeneticSettore BIO/10 - BiochimicaCell Line TumorSirtuin 3CoactivatorGeneticsHumansMolecular BiologyOsteosarcomaOrganelle BiogenesisbiologyEstradiolSettore BIO/16 - Anatomia UmanaChemistryElectron Transport Complex IICalcium-Binding ProteinsMembrane ProteinsPeroxisomeMitochondrial biogenesiPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaCell biology2-MethoxyestradiolMitochondriaSuccinate dehydrogenaseMolecular Docking Simulation030104 developmental biologyMitochondrial biogenesisSettore CHIM/03 - Chimica Generale E Inorganica030220 oncology & carcinogenesisSirtuinCancer cellbiology.proteinResearch ArticleCancer genomicsproteomics
researchProduct

Induction of 2-hydroxycatecholestrogens O-methylation: A missing puzzle piece in diagnostics and treatment of lung cancer

2022

Lung cancer is one of the most common cancers worldwide, causing nearly one million deaths each year. Herein, we present the effect of 2-methoxyestradiol (2-ME), the endogenous metabolite of 17β-estradiol (E2), on non-small cell lung cancer (NSCLC) cells. We observed that 2-ME reduced the viability of lung adenocarcinoma in two-dimensional (2D) and three-dimensional (3D) spheroidal A549 cell culture models. Molecular modeling was carried out aiming to visualize amino acid residues within binding pockets of the acyl-protein thioesterases, namely 1 (APT1) and 2 (APT2), and thus to identify which ones were more likely involved in the interaction with 2-ME. Our findings suggest that 2-ME acts a…

Lung adenocarcinomaEstrogen metabolitesNon-small cell lung cancerelectrophilic potentialOrganic ChemistryClinical BiochemistryMolecular modelingBiomarkerLung cancerBlood serumBiochemistry2-Methoxyestradiol
researchProduct