0000000000883856

AUTHOR

Jürgen Glinnemann

Electron diffraction, X-ray powder diffraction and pair-distribution-function analyses to determine the crystal structures of Pigment Yellow 213, C23H21N5O9.

The crystal structure of the nanocrystalline alpha phase of Pigment Yellow 213 (P.Y. 213) was solved by a combination of single-crystal electron diffraction and X-ray powder diffraction, despite the poor crystallinity of the material. The molecules form an efficient dense packing, which explains the observed insolubility and weather fastness of the pigment. The pair-distribution function (PDF) of the alpha phase is consistent with the determined crystal structure. The beta phase of P.Y. 213 shows even lower crystal quality, so extracting any structural information directly from the diffraction data is not possible. PDF analysis indicates the beta phase to have a columnar structure with a si…

research product

Growth zoning and strain patterns inside diamond crystals as revealed by Raman maps

The Raman mapping technique provides a non-destructive means of studying internal growth textures and other micro-structural heterogeneity inside diamond single-crystals. Raman maps showing distribution patterns of the bandwidth (FWHM) of the main first-order lattice vibration of diamond ( LO=TO phonon at ~1332 cm −1 ) along two-dimensional planes inside diamond crystals may reveal the internal growth zoning of these crystals. The observed zoning is affected, and in some cases even obscured in micro-areas adjacent to inclusions, by patterns of heterogeneous strain in the diamond. We present Raman maps obtained from diamond crystals containing large, single-crystal graphite inclusions, from …

research product

Spectroscopic 2D-tomography: Residual pressure and strain around mineral inclusions in diamonds

We have studied high-pressure inclusions (Ca-silicates, coesite, graphite) in three large diamonds, one from the Kankan district, Guinea, and the other two from the Panda kimberlite, Ekati diamond mines, Canada. Using the in situ point-by-point mapping technique with a confocal Raman system, the mineralogy of the inclusions, as well as their area distribution pattern ( e.g. , of different Ca-silicate phases) and their order-disorder distribution pattern (shown for graphite/disordered carbon), were determined. Raman mapping of the host diamonds yielded 2D-tomographic pressure and strain distribution patterns and provided information on the residual pressure of the inclusions (∼ 2.3 GPa for a…

research product

Crystal Structures and Polymorphism of Nickel and Copper Coordination Polymers with Pyridine Ligands

The crystal structures of a series of pyridine coordination polymers [MIICl2(C5H5N)x]n (M = Ni, Cu), prepared via thermal decomposition are reported. [NiCl2(C5H5N)4] (1) decomposes stepwise via [NiCl2(C5H5N)2]n (2), [NiCl2(C5H5N)]n (3), and [NiCl2(C5H5N)2/3]n (4), to NiCl2 with increasing temperature. The thermal decomposition of [CuCl2(C5H5N)2]n (5), progresses via two polymorphs of [CuCl2(C5H5N)]n (6a and 6b), and [CuCl2(C5H5N)2/3]n (7), to CuCl2. The compounds 3, 4, and 7 were prepared as pure phases. All crystal structures were determined by X-ray powder diffraction. Notably, the crystal structures of the polymorphs 6a and 6b were determined from powder diffraction data of a mixture of …

research product

CCDC 1503642: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

research product

CCDC 1503641: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

research product

CCDC 1503643: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

research product

CCDC 1503639: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

research product

CCDC 1503640: Experimental Crystal Structure Determination

Related Article: Yaşar Krysiak, Lothar Fink, Thomas Bernert, Jürgen Glinnemann, Martin Kapuscinski, Haishuang Zhao, Edith Alig, Martin U. Schmidt|2014|Z.Anorg.Allg.Chem.|640|3190|doi:10.1002/zaac.201400505

research product