A novel dynamic multi-model relevance feedback procedure for content-based image retrieval
This paper deals with the problem of image retrieval in large databases with a big semantic gap by a relevance feedback procedure. We present a novel algorithm for modelling the users's preferences in the content-based image retrieval system.The proposed algorithm considers the probability of an image belonging to the set of those sought by the user, and estimates the parameters of several local logistic regression models whose inputs are the low-level image features. A Principal Component Analysis method is applied to the original vector to reduce its high dimensionality. The relevance probabilities predicted by these local models are combined by means of a weighted average. These weights …