The roles of whole-genome and small-scale duplications in the functional specialization of Saccharomyces cerevisiae genes
Researchers have long been enthralled with the idea that gene duplication can generate novel functions, crediting this process with great evolutionary importance. Empirical data shows that whole-genome duplications (WGDs) are more likely to be retained than small-scale duplications (SSDs), though their relative contribution to the functional fate of duplicates remains unexplored. Using the map of genetic interactions and the re-sequencing of 27 Saccharomyces cerevisiae genomes evolving for 2,200 generations we show that SSD-duplicates lead to neo-functionalization while WGD-duplicates partition ancestral functions. This conclusion is supported by: (a) SSD-duplicates establish more genetic i…
Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae
[EN] Biological systems remain robust against certain genetic and environmental challenges. Robustness allows the exploration of ecological adaptations. It is unclear what factors contribute to increasing robustness. Gene duplication has been considered to increase genetic robustness through functional redundancy, accelerating the evolution of novel functions. However, recent findings have questioned the link between duplication and robustness. In particular, it remains elusive whether ancient duplicates still bear potential for innovation through preserved redundancy and robustness. Here we have investigated this question by evolving the yeast Saccharomyces cerevisiae for 2200 generations …