0000000000891234
AUTHOR
Ben C.j. Hamel
Recessive multiple epiphyseal dysplasia (rMED): phenotype delineation in eighteen homozygotes for DTDST mutation R279W.
Multiple epiphyseal dysplasia (MED) is a generalised skeletal dysplasia that although relatively mild is associated with significant morbidity. Joint pain, joint deformity, waddling gait, and short stature are the main clinical signs and symptoms. In the past, the disorder was subdivided into the milder Ribbing type, usually with flattened epiphyses,1 and the more severe Fairbank type with round epiphyses,2 but many cases were not classifiable as clearly either type.3 MED can be caused by mutations in at least six separate genes: COMP ,4–7 collagen IX ( COL9A1 , COL9A2 , and COL9A3 ),8–13 matrilin 3 ( MATN3 ),15 and the sulphate transporter, DTDST ( DTDST/SLC26A2 ). We have previously repor…
PORCNmutations in focal dermal hypoplasia: coping with lethality
The X-linked dominant trait focal dermal hypoplasia (FDH, Goltz syndrome) is a developmental defect with focal distribution of affected tissues due to a block of Wnt signal transmission from cells carrying a detrimental PORCN mutation on an active X-chromosome. Molecular characterization of 24 unrelated patients from different ethnic backgrounds revealed 23 different mutations of the PORCN gene in Xp11.23. Three were microdeletions eliminating PORCN and encompassing neighboring genes such as EBP, the gene associated with Conradi-Hunermann-Happle syndrome (CDPX2). 12/24 patients carried nonsense mutations resulting in loss of function. In one case a canonical splice acceptor site was mutated…
Mild phenotypes in a series of patients with Opitz GBBB syndrome with MID1 mutations
Contains fulltext : 48815.pdf (Publisher’s version ) (Closed access) Opitz syndrome (OS; MIM 145410 and MIM 300000) is a congenital midline malformation syndrome characterized by hypertelorism, hypospadias, cleft lip/palate, laryngotracheoesophageal (LTE) abnormalities, imperforate anus, developmental delay, and cardiac defects. The X-linked form (XLOS) is caused by mutations in the MID1 gene, which encodes a microtubule-associated RBCC protein. In this study, phenotypic manifestations of patients with and without MID1 mutations were compared to determine genotype-phenotype correlations. We detected 10 novel mutations, 5 in familial cases, 2 in sporadic cases, and 3 in families for whom it …