0000000000894126

AUTHOR

G. Frick

Structure formation in doped discotic polymers and low molar mass model systems

Abstract Doping of low molar mass materials or polymers, possessing disc-like units, with electron acceptors leads to the stabilization of columnar discotic phases or even to the induction of such phases in compounds which either display a nematic discotic phase or only an amorphous phase in the absence of the electron acceptor. The induced columnar phase corresponds frequently to a hexagonally ordered one. We have observed, however, in addition the induction of new columnar phases such as the rectangularly ordered (Dro) and the columnar nematic phase (Nc). The enhancement of the tendency towards the formation of columnar phases is a consequence of electron acceptor—electron donor complex f…

research product

Mixed polymeric monolayers and Langmuir-Blodgett multilayers with functional low molecular weight guest compounds

Abstract Mixed monolayers and Langmuir-Blodgett multilayers of functional low molecular weight guest compounds, especially nonlinear optical (NLO) dyes, within the matrix of an amphotropic spacer polymer have been prepared. The polymer matrix enabled the transfer of guest compounds not capable of self-organizing at the air-water interface by themselves. The structure of the LB multilayers and the transfer process were studied by small angle X-ray scattering and UV-visible spectroscopy. Good NLO coefficients were found in the mixed films.

research product

Modes of Structure Formation in Doped Discotic Polymers and Low Molar Mass Model Systems

By doping low molar mass or polymeric liquid crystals containing flat disc-like units with electron acceptors one achieves a stabilization of columnar phases, the induction of a columnar phases in otherwise discotic nematic or even in amorphous systems. Theoretical models based on the assumption of strong electron donator-acceptor (EDA) complex formation are able to account for the structure formation on a molecular level and the thermodynamic properties of the mixtures and the model of diffusion limited aggregation (DLA) for the structure formation on a supermolecular structure.

research product