0000000000894163

AUTHOR

Vanessa C. Colligs

showing 3 related works from this author

Synthesis of Lamellarin G Trimethyl Ether by von Miller-Plöchl-Type Cyclocondensation

2018

010405 organic chemistryChemistryLamellarin G trimethyl etherOrganic ChemistryTotal synthesisPhysical and Theoretical Chemistry010402 general chemistry01 natural sciencesMedicinal chemistry0104 chemical sciencesEuropean Journal of Organic Chemistry
researchProduct

Synthesis and biological evaluation of a D-ring-contracted analogue of lamellarin D

2017

A D-ring contracted analogue of the strongly cytotoxic marine pyrrole alkaloid lamellarin D was synthesized and investigated for its antiproliferative action towards a wild type and a multidrug resistant (MDR) cancer cell line. The compound was found to inhibit tumor cell growth at submicromolar concentrations and showed a lower relative resistance in the MDR cell line than the antitumor drug camptothecin to which lamellarin D shows cross resistance and with which lamellarin D shares the same binding site.

Cell SurvivalStereochemistryClinical BiochemistryPharmaceutical ScienceAntineoplastic Agents010402 general chemistryHeterocyclic Compounds 4 or More Rings01 natural sciencesBiochemistrychemistry.chemical_compoundCoumarinsCell Line TumorDrug DiscoverymedicineHumansCytotoxic T cellheterocyclic compoundsBinding siteMolecular BiologyBinding Sites010405 organic chemistryChemistryAlkaloidOrganic ChemistryWild typeIsoquinolinesProtein Structure Tertiary0104 chemical sciencesG2 Phase Cell Cycle CheckpointsMolecular Docking SimulationMultiple drug resistanceDNA Topoisomerases Type IDrug Resistance NeoplasmMutagenesisCell cultureLamellarin DM Phase Cell Cycle CheckpointsMolecular MedicineTopoisomerase I InhibitorsCamptothecinmedicine.drugBioorganic & Medicinal Chemistry
researchProduct

Artemisinin Derivatives Target Topoisomerase 1 and Cause DNA Damage in Silico and in Vitro

2017

DNA topoisomerases 1 and 2 are enzymes that maintain DNA topology and play important essential genome functions, including DNA replication and transcription. Aberrant topoisomerases cause genome instability and a wide range of diseases, cancer in particular. Both Topo 1 and 2 are the targets of valuable anticancer drugs, such as camptothecin. It has been previously shown that artemisinin, a sesquiterpene lactone from Artemisia annua L. also known as qinghaosu, possesses anti-cancer effects and one of its derivatives, artesunate inhibits Topo 2. In this study, we evaluated artemisinin and 40 derivatives as potential Topo 1 inhibitors at first by in silico molecular docking analyses. Five com…

0301 basic medicineGenome instabilityDNA damageArtemisia annua03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicinecancerPharmacology (medical)Original ResearchPharmacologytopoisomerasebiologyTopoisomeraselcsh:RM1-950DNA replicationmolecular dockingbiology.organism_classificationMolecular biologyComet assaylcsh:Therapeutics. Pharmacology030104 developmental biologychemistryartemisinin030220 oncology & carcinogenesisbiology.proteinDNA damageCamptothecinDNAmedicine.drugFrontiers in Pharmacology
researchProduct