0000000000894463

AUTHOR

Antal Koos

0000-0003-0563-948x

showing 2 related works from this author

Highly Homogeneous 2D/3D Heterojunction Diodes by Pulsed Laser Deposition of MoS2 on Ion Implantation Doped 4H-SiC

2022

In this paper, 2D/3D heterojunction diodes have been fabricated by pulsed laser deposition (PLD) of MoS2 on 4H-SiC(0001) surfaces with different doping levels, i.e., n− epitaxial doping (≈1016 cm−3) and n+ ion implantation doping (>1019 cm−3). After assessing the excellent thickness uniformity (≈3L-MoS2) and conformal coverage of the PLD-grown films by Raman mapping and transmission electron microscopy, the current injection across the heterojunctions is investigated by temperature-dependent current–voltage characterization of the diodes and by nanoscale current mapping with conductive atomic force microscopy. A wide tunability of the transport properties is shown by the SiC surface dopi…

Mechanics of Materialssilicon carbideMechanical Engineeringheterojunction diodesSettore FIS/01 - Fisica Sperimentaleconductive atomic force microscopyMoS2pulsed laser deposition
researchProduct

Multiscale Investigation of the Structural, Electrical and Photoluminescence Properties of MoS2 Obtained by MoO3 Sulfurization

2022

In this paper, we report a multiscale investigation of the compositional, morphological, structural, electrical, and optical emission properties of 2H-MoS2 obtained by sulfurization at 800 °C of very thin MoO3 films (with thickness ranging from ~2.8 nm to ~4.2 nm) on a SiO2/Si substrate. XPS analyses confirmed that the sulfurization was very effective in the reduction of the oxide to MoS2, with only a small percentage of residual MoO3 present in the final film. High-resolution TEM/STEM analyses revealed the formation of few (i.e., 2–3 layers) of MoS2 nearly aligned with the SiO2 surface in the case of the thinnest (~2.8 nm) MoO3 film, whereas multilayers of MoS2 partially standing up with r…

SulfurizationGeneral Chemical EngineeringC-AFMMoS<sub>2</sub>; sulfurization; XPS; Raman; TEM; C-AFM; photoluminescenceArticleChemistryMoS<sub>2</sub>TEMXPSGeneral Materials ScienceMoS2QD1-999PhotoluminescenceRamanNanomaterials
researchProduct