0000000000896805

AUTHOR

George Kuriakose

showing 2 related works from this author

CAMKIIγ suppresses an efferocytosis pathway in macrophages and promotes atherosclerotic plaque necrosis

2017

Atherosclerosis is the underlying etiology of cardiovascular disease, the leading cause of death worldwide. Atherosclerosis is a heterogeneous disease in which only a small fraction of lesions lead to heart attack, stroke, or sudden cardiac death. A distinct type of plaque containing large necrotic cores with thin fibrous caps often precipitates these acute events. Here, we show that Ca2+/calmodulin-dependent protein kinase gamma (CaMKII gamma) in macrophages plays a major role in the development of necrotic, thin-capped plaques. Macrophages in necrotic and symptomatic atherosclerotic plaques in humans as well as advanced atherosclerotic lesions in mice demonstrated activation of CaMKII. We…

0301 basic medicineMalePathologymedicine.medical_specialtyPhagocytosisGene ExpressionInflammationApoptosisMice TransgenicBiologyPHAGOCYTOSISLIPID MEDIATORS03 medical and health sciencesNecrosisENDOPLASMIC-RETICULUM STRESSINFLAMMATIONCa2+/calmodulin-dependent protein kinaseC/EBP HOMOLOGOUS PROTEINmedicineMacrophageAnimalsHumansKINASE-IILiver X receptorEfferocytosisCells CulturedLiver X ReceptorsAPOE-DEFICIENT MICEc-Mer Tyrosine KinaseATF6MacrophagesAPOPTOTIC CELL ACCUMULATIONGeneral MedicineMERTKAtherosclerosisPlaque AtheroscleroticActivating Transcription Factor 6Enzyme ActivationMice Inbred C57BL030104 developmental biologyRESOLUTIONmedicine.symptomCalcium-Calmodulin-Dependent Protein Kinase Type 2LIVER-X-RECEPTORResearch ArticleSignal TransductionJournal of Clinical Investigation
researchProduct

An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques

2016

Chronic unresolved inflammation plays a causal role in the development of advanced atherosclerosis, but the mechanisms that prevent resolution in atherosclerosis remain unclear. Here, we use targeted mass spectrometry to identify specialized pro-resolving lipid mediators (SPM) in histologically-defined stable and vulnerable regions of human carotid atherosclerotic plaques. The levels of SPMs, particularly resolvin D1 (RvD1), and the ratio of SPMs to pro-inflammatory leukotriene B4 (LTB4), are significantly decreased in the vulnerable regions. SPMs are also decreased in advanced plaques of fat-fed Ldlr−/− mice. Administration of RvD1 to these mice during plaque progression restores the RvD1:…

0301 basic medicineNecrosisLeukotriene B4ScienceGeneral Physics and AstronomyInflammationmedicine.disease_causeArticleGeneral Biochemistry Genetics and Molecular Biology03 medical and health scienceschemistry.chemical_compoundAtherosclerosis--EtiologymedicineCarotid artery--DiseasesEfferocytosisInflammationAtherosclerotic plaqueMultidisciplinarybusiness.industryQGeneral ChemistryLipid signalingAtherosclerosisResolvin d1030104 developmental biologyTargeted mass spectrometrychemistryCancer researchMedicinemedicine.symptombusinessOxidative stressNature Communications
researchProduct