0000000000903373

AUTHOR

Nicolas Pouyanne

showing 5 related works from this author

Context Trees, Variable Length Markov Chains and Dynamical Sources

2012

Infinite random sequences of letters can be viewed as stochastic chains or as strings produced by a source, in the sense of information theory. The relationship between Variable Length Markov Chains (VLMC) and probabilistic dynamical sources is studied. We establish a probabilistic frame for context trees and VLMC and we prove that any VLMC is a dynamical source for which we explicitly build the mapping. On two examples, the "comb" and the "bamboo blossom", we find a necessary and sufficient condition for the existence and the uniqueness of a stationary probability measure for the VLMC. These two examples are detailed in order to provide the associated Dirichlet series as well as the genera…

Discrete mathematicsPure mathematicsStationary distributionMarkov chain010102 general mathematicsProbabilistic dynamical sourcesProbabilistic logicContext (language use)Information theoryVariable length Markov chains01 natural sciencesMeasure (mathematics)Occurrences of words[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probabilitysymbols.namesakesymbolsUniquenessDynamical systems of the intervalDirichlet series0101 mathematics[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Dirichlet seriesMathematics
researchProduct

Variable Length Memory Chains: Characterization of stationary probability measures

2021

Variable Length Memory Chains (VLMC), which are generalizations of finite order Markov chains, turn out to be an essential tool to modelize random sequences in many domains, as well as an interesting object in contemporary probability theory. The question of the existence of stationary probability measures leads us to introduce a key combinatorial structure for words produced by a VLMC: the Longest Internal Suffix. This notion allows us to state a necessary and sufficient condition for a general VLMC to admit a unique invariant probability measure. This condition turns out to get a much simpler form for a subclass of VLMC: the stable VLMC. This natural subclass, unlike the general case, enj…

Statistics and ProbabilityPure mathematicsLongest Internal SuffixStationary distributionMarkov chain60J05 60C05 60G10Probability (math.PR)010102 general mathematics01 natural sciencesMeasure (mathematics)Variable Length Memory Chains010104 statistics & probabilityProbability theoryConvergence of random variablesFOS: MathematicsCountable setState spaceRenewal theory[MATH]Mathematics [math]0101 mathematicsstable context treessemi-Markov chainsMathematics - Probabilitystationary probability measureMathematicsBernoulli
researchProduct

Variable Length Markov Chains, Persistent Random Walks: a close encounter

2020

This is the story of the encounter between two worlds: the world of random walks and the world of Variable Length Markov Chains (VLMC). The meeting point turns around the semi-Markov property of underlying processes.

[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Property (philosophy)Markov chain010102 general mathematicsProbability (math.PR)Close encounterVariable lengthRandom walk01 natural sciences[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010104 statistics & probabilityFOS: MathematicsPoint (geometry)Statistical physics0101 mathematicsMathematics - ProbabilityMathematics
researchProduct

Uncommon Suffix Tries

2011

Common assumptions on the source producing the words inserted in a suffix trie with $n$ leaves lead to a $\log n$ height and saturation level. We provide an example of a suffix trie whose height increases faster than a power of $n$ and another one whose saturation level is negligible with respect to $\log n$. Both are built from VLMC (Variable Length Markov Chain) probabilistic sources; they are easily extended to families of sources having the same properties. The first example corresponds to a ''logarithmic infinite comb'' and enjoys a non uniform polynomial mixing. The second one corresponds to a ''factorial infinite comb'' for which mixing is uniform and exponential.

FOS: Computer and information sciencesCompressed suffix arrayPolynomialLogarithmGeneral MathematicsSuffix treevariable length Markov chain[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Generalized suffix treeprobabilistic source0102 computer and information sciences02 engineering and technologysuffix trie01 natural scienceslaw.inventionCombinatoricslawComputer Science - Data Structures and AlgorithmsTrieFOS: Mathematics0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)Mixing (physics)[ INFO.INFO-DS ] Computer Science [cs]/Data Structures and Algorithms [cs.DS]MathematicsDiscrete mathematicsApplied MathematicsProbability (math.PR)020206 networking & telecommunicationssuffix trie.Computer Graphics and Computer-Aided Design[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]010201 computation theory & mathematicsmixing properties60J05 37E05Suffix[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - ProbabilitySoftware
researchProduct

Characterization of stationary probability measures for Variable Length Markov Chains

2020

By introducing a key combinatorial structure for words produced by a Variable Length Markov Chain (VLMC), the longest internal suffix, precise characterizations of existence and uniqueness of a stationary probability measure for a VLMC chain are given. These characterizations turn into necessary and sufficient conditions for VLMC associated to a subclass of probabilised context trees: the shift-stable context trees. As a by-product, we prove that a VLMC chain whose stabilized context tree is again a context tree has at most one stationary probability measure.

[MATH.MATH-PR]Mathematics [math]/Probability [math.PR][MATH.MATH-PR] Mathematics [math]/Probability [math.PR]60J05 60C05 60G10Probability (math.PR)FOS: MathematicsMathematics - Probability
researchProduct