0000000000904392

AUTHOR

Benjamin Knorr

0000-0001-6700-6501

showing 2 related works from this author

Finite Quantum Gravity Amplitudes: No Strings Attached

2020

We study the gravity-mediated scattering of scalar fields based on a parameterisation of the Lorentzian quantum effective action. We demonstrate that the interplay of infinite towers of spin zero and spin two poles at imaginary squared momentum leads to scattering amplitudes that are compatible with unitarity bounds, causal, and scale-free at trans-Planckian energy. Our construction avoids introducing non-localities or the massive higher-spin particles that are characteristic in string theory.

PhysicsHigh Energy Physics - TheoryUnitarityScatteringScalar (physics)General Physics and AstronomyFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)String theory01 natural sciencesGeneral Relativity and Quantum CosmologyScattering amplitudeGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum mechanics0103 physical sciencesQuantum gravityHigh Energy Physics010306 general physicsQuantumEffective actionPhysical Review Letters
researchProduct

Scattering amplitudes in affine gravity

2020

Affine gravity is a connection-based formulation of gravity that does not involve a metric. After a review of basic properties of affine gravity, we compute the tree-level scattering amplitude of scalar particles interacting gravitationally via the connection in a curved spacetime. We find that, while classically equivalent to general relativity, affine gravity differs from metric quantum gravity.

PhysicsHigh Energy Physics - TheorySpacetime010308 nuclear & particles physicsGeneral relativityScalar (physics)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyScattering amplitudeHigh Energy Physics::TheoryGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)0103 physical sciencesQuantum gravityAffine transformation010306 general physicsMathematical physicsPhysical Review
researchProduct