0000000000907225

AUTHOR

M.a. Aloy

showing 4 related works from this author

Simulations of core collapse using two-moment neutrino transport

2012

Poster at the conference Supernovae Illuminating the Universe: from Individuals to Populations .
researchProduct

Spectral multi-flavour neutrino transport for sipernova simulations

2014

ASP Conf. Proceedings (2013)
researchProduct

Scheduled Relaxation Jacobi method: improvements and applications

2016

Elliptic partial differential equations (ePDEs) appear in a wide variety of areas of mathematics, physics and engineering. Typically, ePDEs must be solved numerically, which sets an ever growing demand for efficient and highly parallel algorithms to tackle their computational solution. The Scheduled Relaxation Jacobi (SRJ) is a promising class of methods, atypical for combining simplicity and efficiency, that has been recently introduced for solving linear Poisson-like ePDEs. The SRJ methodology relies on computing the appropriate parameters of a multilevel approach with the goal of minimizing the number of iterations needed to cut down the residuals below specified tolerances. The efficien…

Physics and Astronomy (miscellaneous)Iterative methodParallel algorithmJacobi methodFinite differences methodFOS: Physical sciencesAlgorismesSystem of linear equations01 natural sciencesReduction (complexity)symbols.namesake0103 physical sciencesFOS: MathematicsMathematics - Numerical Analysis0101 mathematicsJacobi method010303 astronomy & astrophysicsMathematicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Numerical AnalysisApplied MathematicsLinear systemRelaxation (iterative method)Numerical Analysis (math.NA)Equacions diferencials parcialsElliptic equationsComputational Physics (physics.comp-ph)Iterative methodComputer Science Applications010101 applied mathematicsComputational MathematicsElliptic partial differential equationModeling and SimulationsymbolsAstrophysics - High Energy Astrophysical PhenomenaPhysics - Computational PhysicsAlgorithm
researchProduct

Search for GW signals associated with GRBs

2021

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38x10^-6^ (modeled) and 3.1x10^-4^ (unmodeled). We do not find any significant evidence for gravitational-wave signals assoc…

Astrophysics and AstronomyGamma-ray astronomyhigh energy astrophysicsAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstellar astronomyGamma ray burstsGravitational wavesCosmologyobservational astronomyGamma ray astronomyGamma-ray burstsAstrophysical ProcessesNatural Sciences
researchProduct