0000000000907279

AUTHOR

Risto Laitinen

Experimental and Theoretical Investigations of Structural Trends for Selenium(IV) Imides and Oxides: X-ray Structure of Se3(NAd)2

The thermal decomposition of Se(NAd)2 (Ad = 1-adamantyl) in THF was monitored by 77Se NMR and shown to give the novel cyclic selenium imide Se3(NAd)2 as one of the products. An X-ray structural determination showed that Se3(NAd)2 is a puckered five-membered ring with d(Se−Se) = 2.404(1) Å and |d(Se−N)| = 1.873(4) Å. On the basis of 77Se NMR data, other decomposition products include the six-membered ring Se3(NAd)3, and the four-membered rings AdNSe(μ-NAd)2SeO and OSe(μ-NAd)2SeO. The energies for the cyclodimerization of E(NR)2 and RNEO (E = S, Se; R = H, Me, tBu, SiMe3), and the cycloaddition reactions of RNSeO with E(NR)2, RNSO2 with Se(NR)2, and S(NR)2 with Se(NR)2 have been calculated at…

research product

Electronic Structures and Spectroscopic Properties of 6π-Electron Ring Molecules and Ions E2N2 and E42+ (E = S, Se, Te)

The electronic structures and molecular properties of square-planar 6π-electron ring molecules and ions E2N2 and E42+ (E = S, Se, Te) were studied using various ab initio methods and density functionals. All species were found to contain singlet diradical character in their electronic structures. Detailed analysis of the CAS wave function of S2N2 in terms of different valence bond structures gives the largest weight for a Lewis-type singlet diradical VB structure in which the two unpaired electrons reside on nitrogen atoms, though the relative importance of the different VB structures is highly dependent on the level of theory. The diradical character in both E2N2 and E42+ was found to incr…

research product

Identification of mixed bromidochloridotellurate anions in disordered crystal structures of (bdmim)2[TeX2Y4] (X, Y = Br, Cl; bdmim = 1-butyl-2,3-dimethylimidazolium) by combined application of Raman spectroscopy and solid-state DFT calculations

The discrete mixed [TeBrxCl6−x]2− anions in their disordered crystal structures have been identified by using the phases prepared by the reaction of 1-butyl-2,3-dimethylimidazolium halogenides (bdmim)X with tellurium tetrahalogenides TeX4 (X = Cl, Br) as examples. Homoleptic (bdmim)2[TeX6] [X = Cl (1), Br (2)] and mixed (bdmim)2[TeBr2Cl4] (3), and (bdmim)2[TeBr4Cl2] (4) are formed depending on the choice of the reagents, and their crystal structures have been determined by single-crystal X-ray diffraction. The coordination environments of tellurium in all hexahalogenidotellurates are almost octahedral. Because of the crystallographic disorder, the mixed [TeBr2Cl4]2− and [TeBr4Cl2]2− anions …

research product

Experimental and Theoretical Investigations of Tellurium(IV) Diimides and Imidotelluroxanes: X-ray Structures of B(C6F5)3 Adducts of OTe(μ-NtBu)2TeNtBu, [OTe(μ-NtBu)2Te(μ-O)]2 and tBuNH2

The hydrolysis of tBuNTe(μ-NtBu)2TeNtBu (1) with 1 or 2 equiv of (C6F5)3B·H2O results in the successive replacement of terminal imido groups by oxo ligands to give the telluroxane-Lewis acid adducts (C6F5)3B·OTe(μ-NtBu)2TeNtBu (2) and [(C6F5)3B·OTe(μ-NtBu)2Te(μ-O)]2 (3), which were characterized by multinuclear NMR spectroscopy and X-ray crystallography. The TeO distance in 2 is 1.870(2) Å. The di-adduct 3 involves the association of four tBuNTeO monomers to give a tetramer in which both terminal TeO groups [d(TeO) = 1.866(3) Å] are coordinated to B(C6F5)3. The central Te2O2 ring in 3 is distinctly unsymmetrical [d(TeO) = 1.912(3) and 2.088(2) Å]. The X-ray structure of (C6F5)3B·NH2tBu (4),…

research product

77Se NMR Spectroscopic, DFT MO, and VBT Investigations of the Reversible Dissociation of Solid (Se6I2)[AsF6]2•2SO2 in Liquid SO2 to Solutions Containing 1,4-Se6I22+ in Equilibrium with Sen2+ (n = 4, 8, 10) and Seven Binary Selenium Iodine Cations: Preliminary Evidence for 1,1,4,4-Se4Br42+ and cyclo-Se7Br+

The composition of a complex equilibrium mixture formed upon dissolution of (Se6I2)[AsF6]2·2SO2 in SO2(l) was studied by 77Se NMR spectroscopy at −70 °C with both natural-abundance and enriched 77Se-isotope samples (enrichment 92%). Both the natural-abundance and enriched NMR spectra showed the presence of previously known cations 1,4-Se6I22+, SeI3+, 1,1,4,4-Se4I42+, Se102+, Se82+, and Se42+. The structure and bonding in 1,4-Se6I22+ and 1,1,4,4-Se4I42+ were explored using DFT calculations. It was shown that the observed Se−Se bond alternation and presence of thermodynamically stable 4pπ−4pπ Se−Se and 4pπ−5pπ Se−I bonds arise from positive charge delocalization from the formally positively c…

research product