0000000000908736
AUTHOR
Rafael Peixoto
Semantic HMC for Big Data Analysis
International audience; Analyzing Big Data can help corporations to im-prove their efficiency. In this work we present a new vision to derive Value from Big Data using a Semantic Hierarchical Multi-label Classification called Semantic HMC based in a non-supervised Ontology learning process. We also proposea Semantic HMC process, using scalable Machine-Learning techniques and Rule-based reasoning.
Analyse Sémantique du Big Data par Classification Hiérarchique Multi-Label
International audience
Adaptive Learning Process for the Evolution of Ontology-Described Classification Model in Big Data Context
International audience; One of the biggest challenges in Big Data is to exploit value from large volumes of variable and changing data. For this, one must focus on analyzing the data in these Big Data sources and classify the data items according to a domain model (e.g. an ontology). To automatically classify unstructured text documents according to an ontology, a hierarchical multi-label classification process called Semantic HMC was proposed. This process uses ontologies to describe the classification model. To prevent cold start and user overload, the classification process automatically learns the ontology-described classification model from a very large set of unstructured text documen…
Semantic HMC for Business Intelligence using Cross-Referencing
International audience