0000000000910634
AUTHOR
E. Estevez
Conversion coefficients of the isomeric state in 72Br
In order to determine the Gamow‐Teller strength distribution for the N = Z nucleus 72Kr an experiment was performed with a Total Absorption Gamma Spectrometer. To fully accomplish this task it is crucial to determine the multipolarity of the low energy transitions as the spin‐parity of the daughter ground state has been debated. This is done by experimental determination of the conversion coefficients. Preliminary results for the multipolarity and conversion coefficients of the transition connecting the isomeric state at 101 keV with the 72Br ground state are presented.
Total absorption studies of high priority decays for reactor applications: 86Br and 91Rb
Preliminary results from beta decay studies of nuclei that are important for reactor applications are presented. The beta decays have been studied using the total absorption technique (TAS) and the pure beams provided by the JYFLTRAP system at the IGISOL facility of the University of Jyväskylä. peerReviewed
Total absorption γ-ray spectroscopy of the β-delayed neutron emitters 87Br, 88Br, and 94Rb
We investigate the decay of 87,88Br and 94Rb using total absorption γ -ray spectroscopy. These important fission products are β-delayed neutron emitters. Our data show considerable βγ intensity, so far unobserved in high-resolution γ -ray spectroscopy, from states at high excitation energy. We also find significant differences with the β intensity that can be deduced from existing measurements of the β spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for 235U fission at cooling times in the r…
Strong γ-ray emission from neutron unbound states populated in β-decay: Impact on (n,γ) cross-section estimates
J. L. Taín et al. -- 6 pags., 7 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0
Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations
Volume: 111 Host publication title: WONDER-2015 Host publication sub-title: 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS Isbn(print): 978-2-7598-1970-6 Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. Rb-92,Rb-93 are two fission products of importance in reactor antineutrino spectra and decay heat, but their beta-decay properti…
Gamow-Teller Transitions Starting from T[sub z] = +3∕2 Nucleus [sup 47]Ti
Gamow‐Teller (GT) transitions are mediated by the στ operator. Owing to its simplicity and also its spin‐isospin nature, GT transitions play key roles in the studies of nuclear structure as well as astro‐nuclear processes. In violent neutrino‐induced reactions at the core‐collapse stage of type II supernovae, Gamow‐Teller (GT) transitions starting from stable as well as unstable pf‐shell nuclei play important roles. We study GT transitions starting from 47Ti in a high‐resolution (3He,t) charge‐exchange reactions at 0° and at an intermediate incident energy of 140 MeV/nucleon at Research Center for Nuclear Physics (RCNP), Osaka. Individual GT transitions up to high excitations were observed.…
Gamma/neutron competition above the neutron separation energy in delayed neutron emitters
To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyvaskyla in Finland) using Total Absorption -ray Spectroscopy (TAGS) technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn) and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn. © Owned by the authors, published by EDP Sciences, 2014.
Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra
International audience; The accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several s…
Total absorption γ-ray spectroscopy of beta delayed neutron emitters
Preliminary results of the data analysis of the beta decay of 94Rb using a novel - segmented- total absorption spectrometer are shown in this contribution. This result is part of a systematic study of important contributors to the decay heat problem in nuclear reactors. In this particular case the goal is to determine the beta intensity distribution below the neutron separation energy and the gamma/beta competition above.
Measurement of fission products β decay properties using a total absorption spectrometer
In a nuclear reactor, the decay of fission fragments is at the origin of decay heat and antineutrino flux. These quantities are not well known while they are very important for reactor safety and for our understanding of neutrino physics. One reason for the discrepancies observed in the estimation of the decay heat and antineutrinos flux coming from reactors could be linked with the Pandemonium effect. New measurements have been performed at the JYFL facility of Jyvaskyla with a Total Absorption Spectrometer (TAS) in order to circumvent this effect. An overview of the TAS technique and first results from the 2009 measurement campaign will be presented. © Owned by the authors, published by E…
Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure
Abstract An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of 87,88 Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.
TheNd150(He3,t) andSm150(t,He3) reactions with applications toββdecay ofNd150
The {sup 150}Nd({sup 3}He,t) reaction at 140 MeV/u and {sup 150}Sm(t,{sup 3}He) reaction at 115 MeV/u were measured, populating excited states in {sup 150}Pm. The transitions studied populate intermediate states of importance for the (neutrinoless) {beta}{beta} decay of {sup 150}Nd to {sup 150}Sm. Monopole and dipole contributions to the measured excitation-energy spectra were extracted by using multipole decomposition analyses. The experimental results were compared with theoretical calculations obtained within the framework of the quasiparticle random-phase approximation, which is one of the main methods employed for estimating the half-life of the neutrinoless {beta}{beta} decay (0{nu}{b…
Enhanced Gamma-Ray Emission from Neutron Unbound States Populated in Beta Decay
International audience; Total absorption spectroscopy was used to investigate the beta-decay intensity to states above the neutron separation energy followed by gamma-ray emission in 87,88Br and 94Rb. Accurate results were obtained thanks to a careful control of systematic errors. An unexpectedly large gamma intensity was observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The gamma branching as a function of excitation energy was compared to Hauser-Feshbach model calculations. For 87Br and 88Br the gamma branching reaches 57% and 20% respectively, and could be explained as a nuclear structure effect. So…
Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra Determination
8 pags., 3 figs., 1 tab. ; Presented at the XXXIV Mazurian Lakes Conference on Physics, Piaski, Poland, September 6–13, 2015.
Total absorption γ -ray spectroscopy of the β -delayed neutron emitters Br87 , Br88 , and Rb94
We investigate the decay of 87,88Br and 94Rb using total absorption γ -ray spectroscopy. These important fission products are β-delayed neutron emitters. Our data show considerable βγ intensity, so far unobserved in high-resolution γ -ray spectroscopy, from states at high excitation energy. We also find significant differences with the β intensity that can be deduced from existing measurements of the β spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for 235U fission at cooling times in the r…
Structures ofPo201andRn205from EC/β+-decay studies
Several low-lying excited states in {sub 86}{sup 205}Rn{sub 119} and {sub 84}{sup 201}Po{sub 117} were identified for the first time following EC/{beta}{sup +} decay of {sup 205}Fr and {sup 201}At, respectively, using {gamma}-ray and conversion electron spectroscopy at the CERN isotope separator on-line (ISOLDE) facility. The EC/{beta}{sup +} branch from {sup 205}Fr was measured to be 1.5(2)%. The excited states of the daughter nuclei are understood in terms of the odd nucleon coupling to the neighboring even-even core. The neutron single-particle energies of the p{sub 3/2} orbital relative to the f{sub 5/2} ground state in {sup 205}Rn, and the f{sub 5/2} orbital relative to the p{sub 3/2} …
r Process (n, γ) Rate Constraints from the γ Emission of Neutron Unbound States in β decay
Total absorption gamma-ray spectroscopy is used to measure accurately the intensity of γγ emission from neutron-unbound states populated in the ββ-decay of delayed-neutron emitters. From the comparison of this intensity with the intensity of neutron emission a constraint on the (n, γγ) cross section for highly unstable neutron-rich nuclei can be deduced. A surprisingly large γγ branching was observed for a number of isotopes which might indicate the need to increase by a large factor the Hauser-Feshbach (n, γγ) cross-section estimates that impact on r process abundance calculations. peerReviewed
Total Absorption Spectroscopy Study ofRb92Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape
The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.
Beta Decay Studies of Neutron Rich Nuclei Using Total Absorption Gamma-ray Spectroscopy and Delayed Neutron Measurements
International audience; A complete characterisation of the β-decay of neutron-rich nuclei can be obtained from the measurement of β-delayed gamma rays and, whenever the process is energetically possible, β-delayed neutrons. The accurate determination of the β-intensity distribution and the β-delayed neutron emission probability is of great relevance in the fields of reactor technology and nuclear astrophysics. A programme for combined measurements using the total absorption gamma-ray spectroscopy technique and both neutron counters and neutron time-of-flight spectrometers is presented.
Enhancedγ-Ray Emission from Neutron Unbound States Populated inβDecay
Total absorption spectroscopy is used to investigate the β-decay intensity to states above the neutron separation energy followed by γ-ray emission in (87,88)Br and (94)Rb. Accurate results are obtained thanks to a careful control of systematic errors. An unexpectedly large γ intensity is observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The γ branching as a function of excitation energy is compared to Hauser-Feshbach model calculations. For (87)Br and (88)Br the γ branching reaches 57% and 20%, respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daug…
TAS measurements for reactor physics and nuclear structure
In this contribution we will present recent total absorption measurements of the beta decay of neutron‐rich nuclei performed at the IGISOL facility of the Univ. of Jyvaskyla. In the measurements the JYFL Penning Trap was used as a high resolution isobaric separator. The total absorption technique will be described and the impact of recent results in the fields of reactor physics (decay heat calculations) and nuclear structure will be discussed.
The $^{150}$Nd($^3$He,$t$) and $^{150}$Sm($t$,$^3$He) reactions with applications to $\beta\beta$ decay of $^{150}$Nd
The $^{150}$Nd($^3$He,$t$) reaction at 140 MeV/u and $^{150}$Sm($t$,$^3$He) reaction at 115 MeV/u were measured, populating excited states in $^{150}$Pm. The transitions studied populate intermediate states of importance for the (neutrinoless) $\beta\beta$ decay of $^{150}$Nd to $^{150}$Sm. Monopole and dipole contributions to the measured excitation-energy spectra were extracted by using multipole decomposition analyses. The experimental results were compared with theoretical calculations obtained within the framework of Quasiparticle Random-Phase Approximation (QRPA), which is one of the main methods employed for estimating the half-life of the neutrinoless $\beta\beta$ decay ($0\nu\beta\…
Total absorption spectroscopy study of the β decay of Br86 and Rb91
The beta decays of 86Br and 91Rb have been studied using the total absorption spectroscopy technique. The radioactive nuclei were produced at the IGISOL facility in Jyvaskyla and further purified using the JYFLTRAP. 86Br and 91Rb are considered high priority contributors to the decay heat in reactors. In addition 91Rb was used as a normalization point in direct measurements of mean gamma energies released in the beta decay of fission products by Rudstam et al. assuming that this decay was well known from high-resolution measurements. Our results shows that both decays were suffering from the Pandemonium effect and that the results of Rudstam et al. should be renormalized.