0000000000917950

AUTHOR

M. Jourdan

Monitoring surface resonances on Co2MnSi(100) by spin-resolved photoelectron spectroscopy

The magnitude of the spin polarization at the Fermi level of ferromagnetic materials at room temperature is a key property for spintronics. Investigating the Heusler compound Co$_2$MnSi a value of 93$\%$ for the spin polarization has been observed at room temperature, where the high spin polarization is related to a stable surface resonance in the majority band extending deep into the bulk. In particular, we identified in our spectroscopical analysis that this surface resonance is embedded in the bulk continuum with a strong coupling to the majority bulk states. The resonance behaves very bulk-like, as it extends over the first six atomic layers of the corresponding (001)-surface. Our study…

research product

Epitaxy of thin films of the Heusler compound Co2Cr0.6Fe0.4Al

Epitaxial thin films of the highly spin polarized Heusler compound Co2Cr0.6Fe0.4Al are deposited by dc magnetron sputtering. It is shown by XRD and TEM investigations how the use of an Fe buffer layer on MgO(100) substrates supports the growth of highly ordered Co2Cr0.6Fe0.4Al at low deposition temperatures. The as grown samples show a relatively large ordered magnetic moment of mu = 3.0mu_B/f.u. providing evidence for a low level of disorder.

research product

c-Axis tunneling in YBa2Cu3O7-\delta/PrBa2Cu3O7-\delta superlattices

In this work we report c-axis conductance measurements done on a superlattice based on a stack of 2 layers YBa2Cu3O{7-\delta} and 7 layers PrBa2Cu3O{7-\delta} (2:7). We find that these quasi-2D structures show no clear superconducting coupling along the c-axis. Instead, we observe tunneling with a gap of \Delta_c=5.0\pm 0.5 meV for the direction perpendicular to the superconducting planes. The conductance spectrum show well defined quasi-periodic structures which are attributed to the superlattice structure. From this data we deduce a low temperature c-axis coherence length of \xi_c=0.24\pm 0.03 nm.

research product

N\'{e}el Spin Orbit Torque driven antiferromagnetic resonance in Mn$_{2}$Au probed by time-domain THz spectroscopy

We observe the excitation of collective modes in the THz range driven by the recently discovered N\'{e}el spin-orbit torques (NSOT) in the metallic antiferromagnet Mn$_{2}$Au. Temperature dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 K to 450 K softens and looses intensity. Comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR) mode. The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by three orders of magnitude. Based on this and the agreement with our theory modelling, we…

research product

Fungal planet description sheets : 1042-1111

Novel species of fungi described in this study include those from various countries as follows: Antarctica, Cladosporium arenosum from marine sediment sand. Argentina, Kosmimatamyces alatophylus (incl. Kosmimatamyces gen. nov.) from soil. Australia, Aspergillus banksianus, Aspergillus kumbius, Aspergillus luteorubrus, Aspergillus malvicolor and Aspergillus nanangensis from soil, Erysiphe medicaginis from leaves of Medicago polymorpha, Hymenotorrendiella communis on leaf litter of Eucalyptus bicostata, Lactifluus albopicri and Lactifluus austropiperatus on soil, Macalpinomyces collinsiae on Eriachne benthamii, Marasmius vagus on soil, Microdochium dawsoniorum from leaves of Sporobolus natale…

research product