0000000000918204

AUTHOR

Paolo Franceschini

showing 6 related works from this author

Z-Scan theory for thin film measurements: Validation of a model beyond the standard approach using ITO and HfO2

2023

The Z-Scan technique is an easy and widespread approach to evaluate the nonlinear optical coefficient of materials. However, the evaluation of the same coefficients for thin films requires complex experimental setups that allow to remove the contributions of the substrate. Here, we propose a simple, yet effective, theoretical approach that allows to include the substrate contribution to the focusing effect when scanning along the propagation axis. The proposed method therefore removes the need of complex experimental setups and paves the way for a simpler retrieval of optical properties of complex nanostructures.

Nonlinear opticsZ-ScanHafniaSettore ING-INF/02 - Campi ElettromagneticiITO
researchProduct

Tuning the Ultrafast Response of Fano Resonances in Halide Perovskite Nanoparticles

2020

International audience; The full control of the fundamental photophysics of nanosystems at frequencies as high as few THz is key for tunable and ultrafast nanophotonic devices and metamaterials. Here we combine geometrical and ultrafast control of the optical properties of halide perovskite nanoparticles, which constitute a prominent platform for nanophotonics. The pulsed photoinjection of free carriers across the semiconducting gap leads to a subpicosecond modification of the far-field electromagnetic properties that is fully controlled by the geometry of the system. When the nanoparticle size is tuned so as to achieve the overlap between the narrowband excitons and the geometry-controlled…

Materials scienceTerahertz radiationNanophotonicsFOS: Physical sciencesGeneral Physics and AstronomyPhysics::Optics02 engineering and technology010402 general chemistrySettore FIS/03 - FISICA DELLA MATERIA01 natural sciencesOptical switchhalide perovskites nanoparticles[SPI]Engineering Sciences [physics]Fano resonance; halide perovskites nanoparticles; ultrafast photophysics; nanophotonics; Mie resonancesPhysics::Atomic and Molecular Clusters[CHIM]Chemical SciencesGeneral Materials ScienceThin filmPhysics::Chemical PhysicsPerovskite (structure)[PHYS]Physics [physics]Condensed Matter - Materials Sciencebusiness.industryMie resonancesGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)Fano resonanceMetamaterialSettore ING-INF/02 - Campi Elettromagnetici021001 nanoscience & nanotechnology0104 chemical sciencesOptoelectronicsFano resonancenanophotonics0210 nano-technologybusinessultrafast photophysicsUltrashort pulseOptics (physics.optics)Physics - Optics
researchProduct

Transient guided-mode resonance metasurfaces with phase-transition materials

2023

We investigate transient, photo-thermally induced metasurface effects in a planar thin-film multilayer based on a phase-transition material. Illumination of a properly designed multilayer with two obliquely incident and phase-coherent pulsed pumps induces a transient and reversible temperature pattern in the phase-transition layer. The deep periodic modulation of the refractive index, caused by the interfering pumps, produces a transient Fano-like spectral feature associated with a guided-mode resonance. A coupled opto-thermal model is employed to analyze the temporal dynamics of the transient metasurface and to evaluate its speed and modulation capabilities. Using near-infrared pump pulses…

guided modemetasurfacephotonicvanadium dioxidetransient gratingSettore ING-INF/02 - Campi Elettromagneticiphase change materialAtomic and Molecular Physics and OpticsOptics Letters
researchProduct

Opto-thermal dynamics of thin-film optical limiters based on the VO2 phase transition

2022

Protection of human eyes or sensitive detectors from high-intensity laser radiation is an important challenge in modern light technologies. Metasurfaces have proved to be valuable tools for such light control, but the actual possibility of merging multiple materials in the nanofabrication process hinders their application. Here we propose and numerically investigate the opto-thermal properties of plane multilayered structures with phase-change materials for optical limiters. Our structure relies on thin-film VO2 phase change material on top of a gold film and a sapphire substrate. We show how such a multi-layer structure can act as a self-activating device that exploits light-to-heat conver…

VO2photonicsoptical limitingSettore ING-INF/02 - Campi ElettromagneticiElectronic Optical and Magnetic Materials
researchProduct

Second Harmonic Emission From Dielectric Nanoresonators in the Absorption Regime

2023

We study second harmonic generation in dielectric nanocylinders as a function of the wavelength of the incident field and geometrical dimensions. Uncommonly, we consider a spectral range in which the emitted nonlinear signal is partially absorbed by the dielectric. Surprisingly, we reveal that the second harmonic efficiency does not decrease as the imaginary part of the complex dielectric refractive index increases. Indeed, the presence of higher order multipoles supported by the resonators at the fundamental wavelength can significantly boost the generated second harmonic signal even in the dielectric absorption spectral region achieving nonlinear efficiency of the same order of magnitude …

nanoresonatorSettore ING-INF/02 - Campi ElettromagneticiSecond harmonic generationElectrical and Electronic EngineeringdielectricabsorptionAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials
researchProduct

Second order nonlinear optics in AlGaAs metasurfaces

2023

Recently, nonlinear optics at the nanoscale level has emerged as a promising branch of nanophotonics. In this work, we focus our attention on Aluminum Gallium Arsenide (AlGaAs) nanoantennas and metasurfaces for efficient and controlled second harmonic photon emission. After a brief introduction concerning the main studies in this field, we present the latest results achieved in AlGaAs platforms both in the lossless and absorption regimes.

metasurfaceNanophotonicsecond harmonic generationnonlinear opticSettore ING-INF/02 - Campi Elettromagnetici
researchProduct