Model and Control Strategy Simulation of a Racing Series Hybrid Car
Action-reaction principle of Energetic Macroscopic Representation (EMR) and its Inversion Based Control (IBC) is used to organize subsystems interconnection of Noao, a plug-in series hybrid race car equipped with lithium-ion battery pack and an engine/generator set as its range extender, according to the physical causality. Results from drive test of the real car are used to validate the model. The objective of this paper is to provide a dynamic model of this car in order to improve its control scheme and analyse the impact of its optimisation.
Experimental and Numerical Validation of a Wind Gust Facility
The study of a vehicle moving through a lateral wind gust has always been a difficult task due to the difficulties in granting the right similitude. The facility proposed by Ryan and Dominy has been one of the best options to carry it out. In this approach, a double wind tunnel is used to send a lateral moving gust on a stationary model. Using this idea as a starting point, the ISAE has built a dedicated test bench for lateral wind studies on transient conditions. Experimental work has been carried out by means of time-resolved PIV, aiming at studying the unsteady interpenetration of the two flows coming from each wind tunnel. Meanwhile, a 3D CFD model based on URANS was set up, faithfully …
Automatic grid generation from a numerical picture for transient flow simulation over a car shape obstacle
International audience; Computer assists numerization of a domain, requires several engineers or scientists during considerable time. Thus, meshing automatization process has been developed using heavy devices like LASER metrology. It can sometimes be more convenient to use simple devices. Image processing field, reveals many works concerning object detection. Applications concern medical field, automotive, face detection or national defense. This paper aims proposing a simple, but accurate enough, tool to generate 2D domain meshing from a numerical picture that can be used with a transient Finite-Volume CFD code. A car shape object is chosen. From the original picture, edge detection and t…
Probing the low-temperature chemistry of ethanol via the addition of dimethyl ether
Considering the importance of ethanol (EtOH) as an engine fuel and a key component of surrogate fuels, the further understanding of its auto-ignition and oxidation characteristics at engine-relevant conditions (high pressures and low temperatures) is still necessary. However, it remains difficult to measure ignition delay times for ethanol at temperatures below 850 K with currently available facilities including shock tube and rapid compression machine due to its low reactivity. Considering the success of our recent study of toluene oxidation under similar conditions [38], dimethyl ether (DME) has been selected as a radical initiator to explore the low-temperature reactivity of ethanol. In …
Sizing of ICE and Lithium-ion battery for series hybrid vehicle over life cycle with battery aging
This paper presents a method to evaluate the volume and weight of the internal combustion engine (ICE) and lithium-ion battery for a series hybrid vehicle that allows to minimize the mean consumption over system life. Individual driving cycles of the car over a total distance of 100 000 km are simulated. The ICE and battery dimensions are approximated; the fuel consumption is evaluated using a general approach. Lithium-ion battery is described including capacity fading and the energy split between ICE and battery system is evaluated using an heuristic approach. Results show a decrease of mean fuel consumption down to 5.1 L/100km.
Multi Architecture Optimization of a Hybrid Electric Vehicle Using Object-Oriented Programming
This article presents an energetic macroscopic representation multi-architecture model for hybrid vehicles using object-oriented programming. This approach is successfully used to evaluate the power performance and fuel consumption of different vehicles on different driving cycles. An optimization of power source sizing (ICE, EM and Battery) and system control, based on simulation results, is carried. Different architectures are compared for given cycles and optimization of hybrid architecture will also be possible.
VAPORIZATION CHARACTERISTICS OF ETHANOL AND 1-PROPANOL DROPLETS AT HIGH TEMPERATURES
International audience; A detailed description of the vaporization of an isolated droplet has been carried out in this experimental study aimed at investigating ethanol and another aliphatic alcohol, 1-propanol. The characterization of the vaporization phenomenon is necessary for this liquid fuel to develop efficient design of injection systems for propulsion and power generation. Particularly, the vaporization rates and their dependency on temperature, important features for modeling and design, are explored for both ethanol and 1-propanol at intermediate to high temperatures. The experimental setup consists of a pressure chamber in which the furnace, the droplet formation, the droplet sup…