0000000000919333

AUTHOR

T. Skutella

showing 1 related works from this author

Glycogen synthase kinase 3β links neuroprotection by 17β-estradiol to key Alzheimer processes

2004

Estrogen exerts many of its receptor-mediated neuroprotective functions through the activation of various intracellular signal transduction pathways including the mitogen activating protein kinase (MAPK), phospho inositol-3 kinase and protein kinase C pathways. Here we have used a hippocampal slice culture model of kainic acid-induced neurotoxic cell death to show that estrogen can protect against oxidative cell death. We have previously shown that MAPK and glycogen synthase kinase-3beta (GSK-3beta) are involved in the cell death/cell survival induced by kainic acid. In this model and other cellular and in vivo models we have shown that estrogen can also cause the phosphorylation and hence …

Malemedicine.medical_specialtymedicine.drug_classBlotting WesternTetrazolium SaltsEstrogen receptorCell Counttau Proteinsmacromolecular substancesBiologyHippocampusRats Sprague-DawleyGlycogen Synthase Kinase 3MiceOrgan Culture TechniquesPregnancyGSK-3Internal medicineExcitatory Amino Acid AgonistsSerinemedicineAnimalsDrug InteractionsPhosphorylationProtein kinase AGSK3BCells CulturedProtein kinase CEstrogen receptor betaGlycogen Synthase Kinase 3 betaKainic AcidCell DeathEstradiolKinaseGeneral NeuroscienceAntibodies MonoclonalEmbryo MammalianImmunohistochemistryRatsCell biologyMice Inbred C57BLThiazolesEndocrinologyAnimals NewbornEstrogenTyrosineFemalePropidiumNeuroscience
researchProduct