0000000000929558

AUTHOR

R. Salonen

showing 2 related works from this author

Influence of surface topography on depth profiles obtained by Rutherford backscattering spectrometry

2000

A method for determining correct depth profiles from samples with rough surfaces is presented. The method combines Rutherford backscattering spectrometry with atomic force microscopy. The topographical information obtained by atomic force microscopy is used to calculate the effect of the surface roughness on the backscattering spectrum. As an example, annealed Au/ZnSe heterostructures are studied. Gold grains were observed on the surfaces of the annealed samples. The annealing also caused diffusion of gold into the ZnSe. Backscattering spectra of the samples were measured with a 2 MeV 4He+ ion beam. A scanning nuclear microprobe was used to verify the results by measuring backscattering fro…

010302 applied physicsMicroprobeMaterials scienceIon beamAnnealing (metallurgy)Analytical chemistryGeneral Physics and AstronomyHeterojunction02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyRutherford backscattering spectrometry01 natural sciencesSpectral lineCondensed Matter::Materials Science0103 physical sciencesSurface roughness0210 nano-technologySpectroscopyJournal of Applied Physics
researchProduct

Lattice sites of diffused gold and platinum in epitaxial ZnSe layers

2000

Abstract The lattice location of diffused gold and platinum in zinc selenide (ZnSe) epitaxial layers was studied using the Rutherford backscattering (RBS) channeling technique. Thin Au and Pt films were evaporated onto ZnSe samples. The Au/ZnSe samples were annealed at 525°C and the residual Au film was removed by etching. Channeling angular scan measurements showed that about 30% of Au atoms were close to substitutional site (displaced about 0.2 A). In the case of the Pt/ZnSe samples the annealing temperatures ranged from 600°C to 800°C. The Pt minimum yields along 〈1 0 0〉 direction were close to the random value, varying from 80% to 90%. The measured Pt angular scans along 〈1 0 0〉 and 〈1 …

010302 applied physicsNuclear and High Energy PhysicsMaterials scienceScatteringAnnealing (metallurgy)chemistry.chemical_element02 engineering and technologyAtmospheric temperature range021001 nanoscience & nanotechnologyEpitaxy01 natural sciencessymbols.namesakechemistry.chemical_compoundCrystallographyTransition metalchemistry0103 physical sciencessymbolsZinc selenideRutherford scattering0210 nano-technologyPlatinumInstrumentationNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct