0000000000931150

AUTHOR

M. L. Miller

Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron Radiation Emission Spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with $\mathcal{O}({\rm eV})$ resolution. A lower bound of $m(\nu_e) \gtrsim 9(0.1)\, {\rm meV}$ is set by observations of neutrino oscillations, while the KATRIN Experiment - the current-generation tritium beta-decay experiment that is based on Magnetic Adiabatic Collimation with an Electrostatic (MAC-E) filter - will achieve a sensitivity of $m(\nu_e) \lesssim 0.2\,{\rm eV}$. The CRES technique aims to avoid…

research product

Relativistic Effects and Two-Body Currents inH2(e→,e′p)nUsing Out-of-Plane Detection

Measurements of the (2)H((-->)e,e(')p)n reaction were performed with the out-of-plane magnetic spectrometers (OOPS) at the MIT-Bates Linear Accelerator. The longitudinal-transverse, f(LT) and f(')(LT), and the transverse-transverse, f(TT), interference responses at a missing momentum of 210 MeV/c were simultaneously extracted in the dip region at Q2 = 0.15 (GeV/c)(2). In comparison to models of deuteron electrodisintegration, the data clearly reveal strong effects of relativity and final-state interactions and the importance of two-body meson-exchange currents and isobar configurations. We demonstrate that such effects can be disentangled by extracting these responses using the novel out-of…

research product