0000000000931410

AUTHOR

Alexander I. Nazarov

showing 1 related works from this author

Exact constants in Poincaré type inequalities for functions with zero mean boundary traces

2014

In this paper, we investigate Poincare type inequalities for the functions having zero mean value on the whole boundary of a Lipschitz domain or on a measurable part of the boundary. We find exact and easily computable constants in these inequalities for some basic domains (rectangles, cubes, and right triangles) and discuss applications of the inequalities to quantitative analysis of partial differential equations. Copyright © 2014 John Wiley & Sons, Ltd.

Zero meanPartial differential equationeigenvalue problemsGeneral MathematicsMathematical analysista111General EngineeringBoundary (topology)Value (computer science)Type (model theory)Physics::History of PhysicsPoincare type inequalitiessymbols.namesakeLipschitz domainerror estimatesPoincaré conjecturesymbolsfunctional inequalitiesMathematicsMathematical Methods in the Applied Sciences
researchProduct