0000000000936858

AUTHOR

M. Lundkvist

showing 2 related works from this author

A giant planet beyond the snow line in microlensing event OGLE-2011-BLG-0251

2013

We present the analysis of the gravitational microlensing event OGLE-2011-BLG-0251. This anomalous event was observed by several survey and follow-up collaborations conducting microlensing observations towards the Galactic Bulge. Based on detailed modelling of the observed light curve, we find that the lens is composed of two masses with a mass ratio q=1.9 x 10^-3. Thanks to our detection of higher-order effects on the light curve due to the Earth's orbital motion and the finite size of source, we are able to measure the mass and distance to the lens unambiguously. We find that the lens is made up of a planet of mass 0.53 +- 0.21,M_Jup orbiting an M dwarf host star with a mass of 0.26 +- 0.…

planets and satellites: detection010504 meteorology & atmospheric sciencesSatellitesbulge [Galaxy]FOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsDiscoveryGravitational microlensing01 natural sciencesGalaxy: bulgeEinstein radiusLensgravitational lensing: weakSettore FIS/05 - Astronomia e AstrofisicaPlanetSnow0103 physical sciencesgravitational lensing; weak; planets and satellites; detection; planetary systems; Galaxy; bulgegravitational lensing: weak; planets and satellites: detection; planetary systems; Galaxy: bulgeBinaryQB Astronomy010303 astronomy & astrophysicsplanetary systemsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesQBPhysicsEarth and Planetary Astrophysics (astro-ph.EP)Giant planetSystemsSearchAstronomy and AstrophysicsRadiusFrequencyPlanetary systemMass ratioMassLight curveStarsAlgorithmdetection [Planets and satellites]Planetary systemsSpace and Planetary ScienceDwarfAstrophysics::Earth and Planetary Astrophysicsweak [Gravitational lensing]Astrophysics - Earth and Planetary AstrophysicsAstronomy and Astrophysics
researchProduct

Microlensing Discovery of a Population of Very Tight, Very Low Mass Binary Brown Dwarfs

2013

Although many models have been proposed, the physical mechanisms responsible for the formation of low-mass brown dwarfs (BDs) are poorly understood. The multiplicity properties and minimum mass of the BD mass function provide critical empirical diagnostics of these mechanisms. We present the discovery via gravitational microlensing of two very low mass, very tight binary systems. These binaries have directly and precisely measured total system masses of 0.025 M [SUB]⊙[/SUB] and 0.034 M [SUB]⊙[/SUB], and projected separations of 0.31 AU and 0.19 AU, making them the lowest-mass and tightest field BD binaries known. The discovery of a population of such binaries indicates that BD binaries can …

Aérospatiale astronomie & astrophysiquebinaries: generalPhysical chemical mathematical & earth SciencesPhysique chimie mathématiques & sciences de la terreSpace science astronomy & astrophysicsgravitational lensing: micro
researchProduct