0000000000937528
AUTHOR
Diego Caraffini
Improving nanoscale terahertz field localization by means of sharply tapered resonant nanoantennas
Abstract Terahertz resonant nanoantennas have recently become a key tool to investigate otherwise inaccessible interactions of such long-wavelength radiation with nano-matter. Because of their high-aspect-ratio rod-shaped geometry, resonant nanoantennas suffer from severe loss, which ultimately limits their field localization performance. Here we show, via a quasi-analytical model, numerical simulations, and experimental evidence, that a proper tapering of such nanostructures relaxes their overall loss, leading to an augmented local field enhancement and a significantly reduced resonator mode volume. Our findings, which can also be extended to more complex geometries and higher frequencies,…
Ultra-broadband terahertz time domain spectroscopy by Solid State Biased Coherent Detection
The spectral fingerprint of ibuprofen within the THz frequency window has been retrieved through an ultra-broadband THz Time Domain Spectrometry set-up. The latter implements the Solid State Biased Coherent Detection scheme, based on a compact CMOS-compatible integrated device. Such a technique shows unprecedented advantages in term of bandwidth (greater than 10 THz) over other solid state methods like electro-optic sampling.