0000000000938126

AUTHOR

Rémi Habert

showing 3 related works from this author

Gd 3+ -doped sol-gel silica glass for remote ionizing radiation dosimetry

2019

Gadolinium-doped silica glass was prepared, using the sol-gel route, for ionizing radiation dosimetry applications. Such a glassy rod was drawn to a cane at a temperature of 2000 °C. The structural and optical properties of the obtained material were studied using Raman, optical absorption, and photoluminescence spectroscopies. Thereafter, a small piece of this Gd-doped scintillating cane was spliced to a transport passive optical fiber, allowing the remote monitoring of the X-ray dose rate through a radioluminescence (RL) signal. The sample exhibited a linear RL intensity response versus the dose rate from 125 µGy(SiO2)/s up to 12.25 Gy/s. These results confirm the potentialities of this m…

Materials scienceOptical fiberPhotoluminescenceAnalytical chemistry02 engineering and technology01 natural scienceslaw.inventionIonizing radiationsymbols.namesakelaw0103 physical sciencesDosimetryElectrical and Electronic EngineeringDetectors and Experimental TechniquesAbsorption (electromagnetic radiation)ComputingMilieux_MISCELLANEOUSSol-gel010302 applied physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]ta114Radioluminescence021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialsgadolinium-doped silica glasssymbols0210 nano-technologyRaman spectroscopy
researchProduct

Double-seed stabilization of a continuum generated from fourth-order modulation instability

2013

Summary form only given. Modulation instability (MI) is a ubiquitous process in which a weak field is exponentially amplified through a balance between dispersive and nonlinear effects. In single-mode scalar optical fibers, the positive Kerr nonlinearity phase-mismatch can be compensated by anomalous second-order dispersion, a process known as MI2. But phase-matched solutions can also exist in normal second-order dispersion region, thanks to negative even higher-order terms [1]. This process, that we label MI4, gives rise to a pair of narrow sidebands widely detuned far from the pump. MI may grow spontaneously from broadband noise and is usually the main process involved in the early stages…

Physics[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Sidebandbusiness.industryOptical rogue wavesSoliton (optics)02 engineering and technologyStatistical fluctuations01 natural sciencesSupercontinuumComputational physics010309 opticssymbols.namesake020210 optoelectronics & photonicsOptics0103 physical sciencesDispersion (optics)0202 electrical engineering electronic engineering information engineeringsymbolsbusinessNonlinear Schrödinger equationComputingMilieux_MISCELLANEOUSPhotonic-crystal fiber
researchProduct

Active reduction of fluctuations in fourth-order modulation instability

2012

International audience; We experimentally study the fluctuation properties of a scalar fourth-order modulation instability process obtained by pumping a photonic crystal fiber in the normal dispersion region. We observe large wavelength-dependant pulse-to-pulse fluctuations which cannot be significantly reduced by stimulating the process with a single seed. Their reduction requires two seeds slightly detuned from the maximum gain frequency in order to also stimulate the second-order modulation instability process cascaded from the fourth-order one. This concept is validated by experiments and numerical simulations.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Optical fiber[ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Computer simulationbusiness.industryNoise reductionPhysics::OpticsPolarization (waves)01 natural sciencesInstabilityAtomic and Molecular Physics and Opticslaw.invention010309 opticsOpticsFourth orderlawMaximum gain0103 physical sciences010306 general physicsbusinessPhotonic-crystal fiber
researchProduct