0000000000940069

AUTHOR

Jean Gascuel

showing 20 related works from this author

Hypothalamus-olfactory system crosstalk: orexin a immunostaining in mice

2012

It is well known that olfaction influences food intake, and conversely, that an individual’s nutritional status modulates olfactory sensitivity. However, what is still poorly understood is the neuronal correlate of this relationship, as well as the connections between the olfactory bulb and the hypothalamus. The goal of this report is to analyze the relationship between the olfactory bulb and hypothalamus, focusing on orexin A immunostaining, a hypothalamic neuropeptide that is thought to play a role in states of sleep/wakefulness. Interestingly, orexin A has also been described as a food intake stimulator. Such an effect may be due in part to the stimulation of the olfactory bulbar pathway…

Olfactory systemmedicine.medical_specialtyLateral hypothalamus[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionNeuroscience (miscellaneous)Olfactionolfactory systemBiology03 medical and health sciencesCellular and Molecular NeuroscienceOrexin-A0302 clinical medicineInternal medicinemental disordersmedicineFood and Nutritionhypothalamus030304 developmental biologyOriginal Research0303 health sciencesimmunocytologyOlfactory tubercledigestive oral and skin physiologyimmunohistologyaobfood intake behaviourOrexinOlfactory bulbaob;food intake behaviour;hypothalamus;immunohistology;mob;olfactory system;orexin aEndocrinologymobnervous systemAlimentation et NutritionWakefulnessorexin aAnatomyfood intake behaviorNeuroscience[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgerypsychological phenomena and processeshormones hormone substitutes and hormone antagonistsNeuroscience
researchProduct

Crosstalk between hypothalamic neurons and olfactory system: a tracing and anatomo-fuctional investigation in mouse

2014

[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Olfactory system in mammals: structural and functional anatomy

2016

Olfactory system in mammals: structural and functional anatomy

0301 basic medicineOlfactory systemanatomy[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionanimal diseasesmammalOlfactionBiology03 medical and health sciencesPrimary olfactory cortex0302 clinical medicineparasitic diseasesmedicinereproductive and urinary physiologyOlfactory receptorfungiAnatomyolfactoryOlfactory bulb[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition030104 developmental biologymedicine.anatomical_structurecortexFunctional anatomyepitheliumOlfactory epithelium[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgery
researchProduct

3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis.

2005

The adult Xenopus presents the unique capability to smell odors both in water and air thanks to two different olfactory pathways. Nevertheless, the tadpole can initially perceive only water-borne odorants, as the olfactory receptor neurons (ORN) that will detect air-borne odorants develop later. Such a phenomenon requires major reorganization processes. Here we focused on the precise description of the neuroanatomical modifications occurring in the olfactory bulb (OB) of the tadpole throughout metamorphosis. Using both carbocyanine dyes and lectin staining, we investigated the evolution of ORN projection patterns into the OB from Stages 47 to 66, thus covering the period of time when all th…

Olfactory systemMaleOlfactory Nervemedia_common.quotation_subjectGrowth ConesXenopusOlfactionOlfactory Receptor NeuronsXenopus laevisLectinsmedicineAnimalsMetamorphosismedia_commonFluorescent DyesBrain MappingOlfactory receptorMicroscopy ConfocalbiologyGeneral NeuroscienceMetamorphosis BiologicalOlfactory PathwaysCarbocyaninesbiology.organism_classificationOlfactory BulbOlfactory bulbmedicine.anatomical_structureLarvaFemaleNeuroscienceDevelopmental biologyNeuroanatomyThe Journal of comparative neurology
researchProduct

The histone acetyltransferase MOF activates hypothalamic polysialylation to prevent diet-induced obesity in mice

2014

Overfeeding causes rapid synaptic remodeling in hypothalamus feeding circuits. Polysialylation of cell surface molecules is a key step in this neuronal rewiring and allows normalization of food intake. Here we examined the role of hypothalamic polysialylation in the long-term maintenance of body weight, and deciphered the molecular sequence underlying its nutritional regulation. We found that upon high fat diet (HFD), reduced hypothalamic polysialylation exacerbated the diet-induced obese phenotype in mice. Upon HFD, the histone acetyltransferase MOF was rapidly recruited on the St8sia4 polysialyltransferase-encoding gene. Mof silencing in the mediobasal hypothalamus of adult mice prevented…

medicine.medical_specialtyobesityfood intake[ SDV.BA ] Life Sciences [q-bio]/Animal biology03 medical and health sciences0302 clinical medicineInternal medicineBiologie animalemedicineGene silencinghypothalamusMolecular BiologyGene030304 developmental biology2. Zero hungerAnimal biology0303 health sciencessynaptic plasticitybiology[SDV.BA]Life Sciences [q-bio]/Animal biologypolysialylationNeurosciencesCell BiologyHistone acetyltransferasePhenotypeChromatinEndocrinologyHypothalamus[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]Neurons and CognitionSynaptic plasticitybiology.proteinchromatinOriginal Articlehypothalamus;polysialylation;synaptic plasticity;obesity;food intake;chromatin[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]030217 neurology & neurosurgeryHomeostasis
researchProduct

Expression of Odorant Receptor Family, Type 2 OR in the Aquatic Olfactory Cavity of Amphibian Frog Xenopus tropicalis

2012

International audience; Recent genome wide in silico analyses discovered a new family (type 2 or family H) of odorant receptors (ORs) in teleost fish and frogs. However, since there is no evidence of the expression of these novel OR genes in olfactory sensory neurons (OSN), it remains unknown if type 2 ORs (OR2) function as odorant receptors. In this study, we examined expression of OR2 genes in the frog Xenopus tropicalis. The overall gene expression pattern is highly complex and differs depending on the gene and developmental stage. RT-PCR analysis in larvae showed that all of the OR2η genes we identified were expressed in the peripheral olfactory system and some were detected in the brai…

Olfactory systemAmphibian[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionXenopusXenopuslcsh:MedicineIn situ hybridizationOlfactionNoseBiologyReceptors OdorantModel Organismsbiology.animalGene expressionAnimalslcsh:ScienceReceptorBiologyGeneIn Situ HybridizationOlfactory SystemGenomeMultidisciplinarylcsh:RGene Expression Regulation DevelopmentalAnimal ModelsAnatomybiology.organism_classificationSensory SystemsCell biologySmellLarvaSensory Perceptionlcsh:Q[SDV.AEN]Life Sciences [q-bio]/Food and NutritionResearch ArticleNeurosciencePLoS ONE
researchProduct

Exotic Models May Offer Unique Opportunities to Decipher Specific Scientific Question: The Case ofXenopusOlfactory System

2013

The fact that olfactory systems are highly conserved in all animal species from insects to mammals allow the generalization of findings from one species to another. Most of our knowledge about the anatomy and physiology of the olfactory system comes from data obtained in a very limited number of biological models such as rodents, Zebrafish, Drosophila, and a worm, Caenorhabditis elegans. These models have proved useful to answer most questions in the field of olfaction, and thus concentrating on these few models appear to be a pragmatic strategy. However, the diversity of the organization and physiology of the olfactory system amongst phyla appear to be greater than generally assumed and th…

Olfactory systemHistologybiologyXenopusOlfactionAnatomybiology.organism_classificationCaenorhabditisEvolutionary biologyGeneralization (learning)DECIPHERAnatomyAnimal speciesEcology Evolution Behavior and SystematicsBiotechnologyThe Anatomical Record
researchProduct

Centrifugal projections to the main olfactory bulb revealed by trans‐synaptic retrograde tracing in mice

2020

A wide range of evidence indicates that olfactory perception is strongly involved in food intake. However, the polysynaptic circuitry linking the brain areas involved in feeding behavior to the olfactory regions is not well known. The aim of this article was to examine such circuits. Thus, we described, using hodological tools such as transsynaptic viruses (PRV152) transported in a retrograde manner, the long-distance indirect projections (two to three synapses) onto the main olfactory bulb (MOB). The ß-subunit of the cholera toxin which is a monosynaptic retrograde tracer was used as a control to be able to differentiate between direct and indirect projections. Our tracing experiments show…

0301 basic medicineRRID:AB_142754RRID:AB_141521Lateral hypothalamus[SDV.NEU.NB]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/NeurobiologyRRID:AB_956454feeding behaviorNucleus accumbensBiologyRRID:AB_2534069choleratoxin b subunitMice03 medical and health sciences0302 clinical medicineRRID:AB_2650474RRID:AB_2636803Arcuate nucleusRRID:AB_2534091Animals[SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]ComputingMilieux_MISCELLANEOUSrewardFluorescent DyesRRID:AB_297689General NeuroscienceSolitary nucleusOlfactory Pathwayspseudorabies virusOlfactory BulbRetrograde tracingOlfactory bulbOrexinMice Inbred C57BLodor processing[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition030104 developmental biologyMicroscopy FluorescenceHypothalamusRRID:AB_300798[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]RRID:AB_2302603RRID:AB_2269954RRID:AB_726859Neuroscience[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgery
researchProduct

Food Intake Adaptation to Dietary Fat Involves PSA-Dependent Rewiring of the Arcuate Melanocortin System in Mice

2012

International audience; Hormones such as leptin and ghrelin can rapidly rewire hypothalamic feeding circuits when injected into rodent brains. These experimental manipulations suggest that the hypothalamus might reorganize continually in adulthood to integrate the metabolic status of the whole body. In this study, we examined whether hypothalamic plasticity occurs in naive animals according to their nutritional conditions. For this purpose, we fed mice with a short-term high-fat diet (HFD) and assessed brain remodeling through its molecular and functional signature. We found that HFD for 3 d rewired the hypothalamic arcuate nucleus, increasing the anorexigenic tone due to activated pro-opio…

MaleMESH: Signal TransductionPro-Opiomelanocortin[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionSYNAPTIC INPUT ORGANIZATIONMESH: Energy IntakeWeight GainMESH: Mice KnockoutMice0302 clinical medicineMESH : Sialic AcidsNPY/AGRP NEURONSMESH: Pro-OpiomelanocortinMESH: AnimalsMESH : Neuronal PlasticityMESH: Neuronal PlasticityPLASTICITYMESH : Pro-OpiomelanocortinMESH : Adaptation PhysiologicalMice KnockoutFEEDING CIRCUITSMESH : Organ Culture TechniquesINSULIN-RESISTANCE0303 health sciencesNeuronal PlasticityPOLYSIALIC ACIDGeneral NeuroscienceLeptinMESH: Energy Metabolismdigestive oral and skin physiologyINDUCED OBESITYMESH : SialyltransferasesMESH : Weight GainArticlesAdaptation PhysiologicalMESH : Mice TransgenicBODY-WEIGHTMESH: Dietary FatsHypothalamusCELL-ADHESION MOLECULEMESH: Weight GainGhrelinENERGY-BALANCEMelanocortinhormones hormone substitutes and hormone antagonistsSignal Transductionmedicine.medical_specialtyMESH: Mice TransgenicMESH : MaleMESH: SialyltransferasesMESH: Arcuate NucleusMice TransgenicMESH : Mice Inbred C57BLBiologyMESH : Arcuate NucleusMESH: Sialic Acids03 medical and health sciencesOrgan Culture TechniquesInsulin resistanceMESH: Mice Inbred C57BLArcuate nucleusInternal medicineMESH : MicemedicineAnimalsMESH: Mice030304 developmental biologyMESH : Signal TransductionArcuate Nucleus of HypothalamusMESH : Energy Intakemedicine.diseaseDietary FatsMESH: Adaptation PhysiologicalSialyltransferasesMESH: Organ Culture TechniquesMESH: MaleMice Inbred C57BLMESH : Energy MetabolismEndocrinologyMESH: Nerve NetSialic AcidsMESH : Nerve NetMESH : Mice KnockoutMESH : AnimalsNerve NetEnergy IntakeEnergy Metabolism[SDV.AEN]Life Sciences [q-bio]/Food and NutritionMESH : Dietary Fats030217 neurology & neurosurgeryHomeostasisHormoneThe Journal of Neuroscience
researchProduct

Transient Receptor Potential Canonical 3 (TRPC3) Channels Are Required for Hypothalamic Glucose Detection and Energy Homeostasis

2017

Fil: Chrétien, Chloé. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Fenech, Claire. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Liénard, Fabienne. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Grall, Sylvie. University of Bourgogne Franche-Comté. Institut National de la Recherche Agronomique. Centre des Sciences du Goût et de l’Alimentation; France Fil: Chevalier, Charlène. University of …

Male0301 basic medicine[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionEndocrinology Diabetes and Metabolismmedicine.medical_treatmentsourisTRPC3proopiomelanocortin neuronsEnergy homeostasisRats Sprague-DawleyEatingMiceTransient receptor potential channelneuropeptide-yTRPC3synaptic-transmissionneuroneInsulin SecretionHomeostasisInsulinarcuate nucleusNeurons2. Zero hungerneuropeptide ydiabetesion channelsnoyau arquémuscle squelettiqueFastingfood-intakeprise alimentaire16. Peace & justiceNeuropeptide Y receptorcation channelsproopiomelanocortine3. Good healthMedicina BásicaAlimentation et NutritionEndocrinologie et métabolismemedicine.medical_specialtyCIENCIAS MÉDICAS Y DE LA SALUDBlotting Westernarcuate nucleus;food-intake;synaptic-transmission;endothelial-cell;skeletal-muscle;cation channel;neuropeptide-y;ion channel;mouse;proopiomelanocortin neuronHypothalamusInmunologíaMédecine humaine et pathologieBiologyNeurotransmissionReal-Time Polymerase Chain ReactionHOMEOSTASIS ENERGETICA03 medical and health sciencesCalcium imagingInternal medicineInternal MedicinemedicineFood and NutritionAnimalsskeletal-musclecanal ioniquemouseTRPC Cation ChannelsEndocrinology and metabolismInsulinBody Weighttransmission synaptiqueGlucose Tolerance TestRatsMice Inbred C57BLGlucose030104 developmental biologyEndocrinologyendothelial-cellsGLUCOSA HIPOTALAMICAHypothalamic glucose sensingAnorecticHuman health and pathologyCANALES IONICOSEnergy Metabolismcellule endotheliale[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

A basal ganglia-like cortical-amygdalar-hypothalamic network mediates feeding behavior.

2020

International audience; The network connecting the insular cortex, the central nucleus of the amygdala, and a caudal hypothalamic nuclear complex including the parasubthalamic nucleus (PSTN) is of interest due to its role in controlling feeding behavior. Here, we show that the organization of this network is similar to that of the basal ganglia network, implying that both fit within a simplified structural plan of the forebrain. Then, we demonstrate that the PSTN complex modulates behavior in response to hedonic factors normally inducing a “reward effect.” The PSTN complex is involved in a “non-feed” response equivalent of a “non-reward” evaluation: “I don’t want to consume this food, recog…

Malecentral amygdala nucleusLateral hypothalamusHypothalamusBiologyInsular cortexIndirect pathway of movementAmygdalaBasal GangliaRats Sprague-Dawley03 medical and health sciencesMice0302 clinical medicineSubthalamic NucleusBasal gangliaNeural PathwaysmedicineAnimals030304 developmental biologyCerebral CortexNeurons0303 health sciencesMultidisciplinary[SDV.NEU.PC]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]/Psychology and behaviorBehavior AnimalCentral nucleus of the amygdalaCentral Amygdaloid NucleusFeeding BehaviorBiological SciencesRatsSubthalamic nucleusmedicine.anatomical_structureOlfactory CortexHypothalamusinsular cortexModels Animal[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC][SDV.AEN]Life Sciences [q-bio]/Food and NutritionNeuroscience030217 neurology & neurosurgeryProceedings of the National Academy of Sciences of the United States of America
researchProduct

Ontogenesis of the Extra-Bulbar Olfactory Pathway inXenopus laevis

2013

Although the development, anatomy, and physiology of the vertebrate olfactory system are fairly well understood, there is still no clear definition of the terminal nerve complex acknowledged by all. Among the most debated matters is whether or not the extrabulbar projections found in anamniotes should or should not be considered part of the terminal nerve complex. In this context, we investigated the early development of the extrabulbar pathway in Xenopus larvae from placodal differentiation to postmetamorphic stages. We showed that the extrabulbar fibers become visible around Stage 42 and are conserved throughout metamorphosis. We confirmed previous reports concerning their central project…

Olfactory system0303 health sciencesHistologyContext (language use)OlfactionAnatomyBiologyOlfactory bulb03 medical and health sciences0302 clinical medicinemedicine.anatomical_structureOlfactory nerveAnamniotesmedicineTerminal nerveAnatomyOlfactory epithelium030217 neurology & neurosurgeryEcology Evolution Behavior and Systematics030304 developmental biologyBiotechnologyThe Anatomical Record
researchProduct

A new odorant-binding protein XlaeOBP identified in the aerial olfactory system of Xenopus laevis and Xenopus tropicalis

2004

National audience

XENOPUS TROPICALIS[CHIM.OTHE] Chemical Sciences/OtherXENOPUS LAEVISAERIAL OLFACTORY SYSTEM[CHIM.OTHE]Chemical Sciences/OtherComputingMilieux_MISCELLANEOUSODORANT-BINDING PROTEIN
researchProduct

Spatial reconstruction of Drosophila NPF neurons

2011

Spatial reconstruction of Drosophila NPF neurons. SENC XIV

[SDV.BA] Life Sciences [q-bio]/Animal biologynutriment[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutritionnutrient[SDV.BA]Life Sciences [q-bio]/Animal biologyneurone olfactif[ SDV.BA ] Life Sciences [q-bio]/Animal biologydrosophile[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition[ SDV.NEU ] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]flies[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC][SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]mouche[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition
researchProduct

Xenopus Laevis and Xenopus Tropicalis have different number of OBP genes : Xlaeobp and Xtroobp

2008

International audience

OBPOBP GENEXENOPUS TROPICALISXENOPUS LAEVIS[CHIM.OTHE] Chemical Sciences/OtherXLAEOBPODORANT BINDING PROTEIN[CHIM.OTHE]Chemical Sciences/OtherXTROOBPComputingMilieux_MISCELLANEOUS
researchProduct

Developpment of the olfactory system. Sensory Science and Perception “Perceiving the future: Science and industry facing the sensory challenge”

2006

[SCCO.NEUR]Cognitive science/Neuroscience[SCCO.NEUR] Cognitive science/Neuroscience[ SCCO.NEUR ] Cognitive science/Neuroscience
researchProduct

Intégration centrale de la perception sensorielle associée à l’alimentation

2012

Poster; National audience

[SDV.AEN] Life Sciences [q-bio]/Food and NutritionComputingMethodologies_GENERAL[SDV.AEN]Life Sciences [q-bio]/Food and NutritionComputingMilieux_MISCELLANEOUS
researchProduct

Characterization of an olfactory binding protein Xtro OBP in xenopus tropicalis in the aerial cavity

2006

[SCCO.NEUR]Cognitive science/Neuroscience[SCCO.NEUR] Cognitive science/Neuroscience[ SCCO.NEUR ] Cognitive science/Neuroscience
researchProduct

Diversité des systèmes olfactifs des Vertébrés

2012

ISBN-10 : 978-2-7592-1770-0 ; issn : 1777-4624

[SDV.AEN] Life Sciences [q-bio]/Food and Nutrition[ SDV.AEN ] Life Sciences [q-bio]/Food and Nutrition[SDV.AEN]Life Sciences [q-bio]/Food and NutritionComputingMilieux_MISCELLANEOUS
researchProduct

Specific expression of olfactory binding protein in the aerial olfactory cavity of adult and developing Xenopus

2005

International audience

METAMORPHOSISXENOPUS TROPICALISXENOPUS LAEVISOLFACTION[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC][SDV.NEU] Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC]ComputingMilieux_MISCELLANEOUSODORANT-BINDING PROTEINOLFACTORY BINDING PROTEIN
researchProduct