0000000000942978

AUTHOR

J. M. Anderson

showing 2 related works from this author

Multiband RadioAstron space VLBI imaging of the jet in quasar S5 0836+710

2019

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.-- Open Access funding provided by Max Planck Society.

BrightnessActive galactic nucleusactive [Galaxies]010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesContext (language use)galaxies [Radio continuum]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences7. Clean energyGalaxies: individual: S5 0836+710Radio continuum: galaxiesRadio telescopeAstrophysical jet0103 physical sciencesVery-long-baseline interferometry010303 astronomy & astrophysics0105 earth and related environmental sciencesPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Jet (fluid)Computer Science::Information RetrievalAstronomy and AstrophysicsQuasarGalaxies: activeAstrophysics - Astrophysics of Galaxiesindividual: S5 0836+710 [Galaxies]Space and Planetary ScienceGalaxies: jetsAstrophysics of Galaxies (astro-ph.GA)jets [Galaxies]Astrophysics - High Energy Astrophysical Phenomena
researchProduct

Probing the innermost regions of AGN jets and their magnetic fields with RadioAstron II. Observations of 3C 273 at minimum activity

2017

RadioAstron is a 10 m orbiting radio telescope mounted on the Spektr-R satellite, launched in 2011, performing Space Very Long Baseline Interferometry (SVLBI) observations supported by a global ground array of radio telescopes. With an apogee of about 350 000 km, it is offering for the first time the possibility to perform {\mu}as-resolution imaging in the cm-band. We present observations at 22 GHz of 3C 273, performed in 2014, designed to reach a maximum baseline of approximately nine Earth diameters. Reaching an angular resolution of 0.3 mas, we study a particularly low-activity state of the source, and estimate the nuclear region brightness temperature, comparing with the extreme one det…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)BrightnessActive galactic nucleus010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - Astrophysics of Galaxies01 natural sciencesRadio telescopeSpace and Planetary ScienceBrightness temperatureAstrophysics of Galaxies (astro-ph.GA)0103 physical sciencesVery-long-baseline interferometryAstrophysics - High Energy Astrophysical PhenomenaBlazar010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciencesFermi Gamma-ray Space Telescope
researchProduct